Zaloguj się

The dynamics of a mechanical system can be easily understood by interpreting a potential energy diagram. Since energy is a scalar quantity, the interpretation of the dynamics of the system becomes even simpler.

Take the example of a skater on a parabolic ramp. The potential energy at different points along the ramp will be proportional to the height of the ramp, which varies quadratically with the horizontal position on the ramp. As the skater moves down the ramp from the highest position, their potential energy converts to kinetic energy. The net force acting on the skater is gravitational force; therefore, the total mechanical energy of the skater is constant and conserved. At any given position on the ramp, the sum of the potential energy and the kinetic energy will be the total mechanical energy of the skater.

The skater oscillates between two points, which are symmetric about the bottom of the ramp. At these two positions, the potential energies are equal, and this is the total mechanical energy of the skater, with the kinetic energy being zero. These positions are called ‘returning points’ because the skater will always move towards the bottom of the ramp from these positions. The bottom of the ramp is a position where the potential energy is zero, and the kinetic energy is equal to the total mechanical energy of the skater. This position is called the equilibrium position.

This text is adapted from Openstax, University Physics Volume 1, Section 8.4: Potential Energy Diagrams and Stability.

Tagi

Energy DiagramsPotential EnergyKinetic EnergyMechanical EnergySkater On Parabolic RampEquilibrium PositionReturning Points

Z rozdziału 8:

article

Now Playing

8.11 : Energy Diagrams - I

Potential Energy and Energy Conservation

4.8K Wyświetleń

article

8.1 : Grawitacyjna energia potencjalna

Potential Energy and Energy Conservation

15.2K Wyświetleń

article

8.2 : Sprężysta energia potencjalna

Potential Energy and Energy Conservation

15.5K Wyświetleń

article

8.3 : Zasada zachowania energii mechanicznej

Potential Energy and Energy Conservation

13.2K Wyświetleń

article

8.4 : Praca wykonana w systemie przez siłę zewnętrzną

Potential Energy and Energy Conservation

1.9K Wyświetleń

article

8.5 : Siły konserwatywne

Potential Energy and Energy Conservation

11.6K Wyświetleń

article

8.6 : Siły niekonserwatywne

Potential Energy and Energy Conservation

7.2K Wyświetleń

article

8.7 : Zasada zachowania energii

Potential Energy and Energy Conservation

8.5K Wyświetleń

article

8.8 : Zasada zachowania energii: zastosowanie

Potential Energy and Energy Conservation

6.2K Wyświetleń

article

8.9 : Siła i energia potencjalna w jednym wymiarze

Potential Energy and Energy Conservation

5.2K Wyświetleń

article

8.10 : Siła i energia potencjalna w trzech wymiarach

Potential Energy and Energy Conservation

4.7K Wyświetleń

article

8.12 : Diagramy energetyczne - II

Potential Energy and Energy Conservation

4.5K Wyświetleń

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone