JoVE Logo

サインイン

3.3 : Geometric Mean

The mean is a measure of the central tendency of a data set. In some data sets, the data is inherently multiplicative, and the arithmetic mean is not useful. For example, the human population multiplies with time, and so does the credit amount of financial investment, as the interest compounds over successive time intervals.

In cases of multiplicative data, the geometric mean is used for statistical analysis. First, the product of all the elements is taken. Then, if there are n elements in the dataset, the nth root of the products is defined as the geometric mean of the data set. It can also be expressed via the use of the natural logarithmic function.

For example, suppose money compounds at annual interest rates of 10%, 5%, and 2%. In that case, the average growth factor can be calculated by computing the geometric mean of 1.10, 1.05, and 1.02. Its value comes out to be 1.056, which means that the average growth rate is 5.6% per annum.

It can be shown that the geometric mean of a sample data set is always quantitatively less than or at most equal to the arithmetic mean of the sample.

タグ

Geometric MeanCentral TendencyMultiplicative DataStatistical AnalysisData SetProduct Of ElementsNth RootAverage Growth FactorCompound InterestNatural Logarithmic FunctionArithmetic MeanSample Data Set

章から 3:

article

Now Playing

3.3 : Geometric Mean

中心傾向の測定

3.4K 閲覧数

article

3.1 : セントラルテンデンシーとは?

中心傾向の測定

14.0K 閲覧数

article

3.2 : 算術平均

中心傾向の測定

13.4K 閲覧数

article

3.4 : 調和平均

中心傾向の測定

3.1K 閲覧数

article

3.5 : トリム平均

中心傾向の測定

2.8K 閲覧数

article

3.6 : 加重平均

中心傾向の測定

4.9K 閲覧数

article

3.7 : 二乗平均平方根

中心傾向の測定

3.2K 閲覧数

article

3.8 : 度数分布からの平均

中心傾向の測定

16.1K 閲覧数

article

3.9 : モードとは?

中心傾向の測定

18.1K 閲覧数

article

3.10 : 中央値

中心傾向の測定

17.9K 閲覧数

article

3.11 : ミッドレンジ

中心傾向の測定

3.6K 閲覧数

article

3.12 : 歪度

中心傾向の測定

10.9K 閲覧数

article

3.13 : 歪度の種類

中心傾向の測定

11.4K 閲覧数

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved