S'identifier

The mean is a measure of the central tendency of a data set. In some data sets, the data is inherently multiplicative, and the arithmetic mean is not useful. For example, the human population multiplies with time, and so does the credit amount of financial investment, as the interest compounds over successive time intervals.

In cases of multiplicative data, the geometric mean is used for statistical analysis. First, the product of all the elements is taken. Then, if there are n elements in the dataset, the nth root of the products is defined as the geometric mean of the data set. It can also be expressed via the use of the natural logarithmic function.

For example, suppose money compounds at annual interest rates of 10%, 5%, and 2%. In that case, the average growth factor can be calculated by computing the geometric mean of 1.10, 1.05, and 1.02. Its value comes out to be 1.056, which means that the average growth rate is 5.6% per annum.

It can be shown that the geometric mean of a sample data set is always quantitatively less than or at most equal to the arithmetic mean of the sample.

Tags
Geometric MeanCentral TendencyMultiplicative DataStatistical AnalysisData SetProduct Of ElementsNth RootAverage Growth FactorCompound InterestNatural Logarithmic FunctionArithmetic MeanSample Data Set

Du chapitre 3:

article

Now Playing

3.3 : Geometric Mean

Mesure de la tendance centrale

3.3K Vues

article

3.1 : Qu’est-ce que la tendance centrale ?

Mesure de la tendance centrale

13.8K Vues

article

3.2 : Moyenne arithmétique

Mesure de la tendance centrale

13.1K Vues

article

3.4 : Moyenne harmonique

Mesure de la tendance centrale

3.0K Vues

article

3.5 : Moyenne ajustée

Mesure de la tendance centrale

2.8K Vues

article

3.6 : Moyenne pondérée

Mesure de la tendance centrale

4.8K Vues

article

3.7 : Moyenne quadratique

Mesure de la tendance centrale

3.2K Vues

article

3.8 : Moyenne d’une distribution de fréquence

Mesure de la tendance centrale

15.0K Vues

article

3.9 : Qu’est-ce qu'un mode ?

Mesure de la tendance centrale

17.0K Vues

article

3.10 : Médiane

Mesure de la tendance centrale

16.8K Vues

article

3.11 : Milieu de gamme

Mesure de la tendance centrale

3.5K Vues

article

3.12 : Asymétrie

Mesure de la tendance centrale

9.9K Vues

article

3.13 : Types d’asymétrie

Mesure de la tendance centrale

10.2K Vues

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.