サインイン

The most commonly used measure of variation is the standard deviation. It is a numerical value measuring how far data values are from their mean. The standard deviation value is small when the data are concentrated close to the mean, exhibiting slight variation or spread. The standard deviation value is never negative, it is either positive or zero. The standard deviation is larger when the data values are more spread out from the mean, which means the data values are exhibiting more variation.

Consider the waiting time for customers at the checkout at two supermarkets, X and Y. The average waiting time at both supermarkets is five minutes. At supermarket X, the standard deviation for the wait time is two minutes; at supermarket Y, the standard deviation for the waiting time is four minutes. As supermarket Y has a higher standard deviation, there is more variation in the wait time at supermarket Y. Overall, wait times at supermarket Y are more spread out or show more deviations from the average. In contrast, wait times at supermarket X are more concentrated near the average.

The lowercase letter s signifies the sample standard deviation, while the Greek letter σ (sigma, lowercase) represents the population standard deviation.

The sample standard deviation is given by the formula

Equation1

The population standard deviation is given by the following formula:

Equation2

This text is adapted from2.7 Measures of the Spread of the Data - Introductory Statistics | OpenStax

タグ
Standard DeviationMeasure Of VariationData ValuesMeanNumerical ValueSpreadVariationWaiting TimeSupermarketsSample Standard DeviationPopulation Standard DeviationFormula

章から 4:

article

Now Playing

4.3 : Standard Deviation

変動の尺度

15.4K 閲覧数

article

4.1 : バリエーションとは?

変動の尺度

10.9K 閲覧数

article

4.2 : 範囲

変動の尺度

10.8K 閲覧数

article

4.4 : 平均の標準誤差

変動の尺度

5.4K 閲覧数

article

4.5 : 標準偏差の計算

変動の尺度

7.0K 閲覧数

article

4.6 : 分散

変動の尺度

9.1K 閲覧数

article

4.7 : 変動係数

変動の尺度

3.6K 閲覧数

article

4.8 : 標準偏差を解釈するための範囲の経験則

変動の尺度

8.7K 閲覧数

article

4.9 : 標準偏差を解釈するための経験的方法

変動の尺度

5.0K 閲覧数

article

4.10 : 標準偏差を解釈するチェビシェフの定理

変動の尺度

4.0K 閲覧数

article

4.11 : 平均絶対偏差

変動の尺度

2.5K 閲覧数

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved