サインイン

Cyclic Adenosine Monophosphate (cAMP) is an essential second messenger that activates protein kinase A (PKA) and regulates various biological processes. A single epinephrine molecule binds to GPCR and activates several heterotrimeric G proteins, each stimulating multiple adenylyl cyclase, amplifying the signal, and synthesizing large numbers of cAMP molecules. Small changes in cAMP concentration affect PKA activity. The binding of four cAMP molecules induces a conformational change in PKA, dissociating the catalytic subunits from the regulatory subunit. Activated PKA can now phosphorylate serine/threonine residues of downstream target proteins and stimulate them to produce an appropriate cellular response. PKA can generate distinct responses in different cells by activating specific target proteins, even when stimulated by the same extracellular ligand.

In liver and muscle cells, epinephrine-bound G protein-coupled receptors (GPCR) cause a rise in cAMP levels. The increased cAMP further activates PKA to promote glucose mobilization in two ways.

  1. It phosphorylates glycogen phosphorylase kinase (GPK) and activates it. GPK further phosphorylates and activates glycogen phosphorylase (GP), which catalyzes the breakdown of glycogen into glucose 1-phosphate.
  2. PKA also phosphorylates and inhibits glycogen synthase (GS) and prevents glycogen synthesis.

In addition, PKA phosphorylates an inhibitor of phosphoprotein phosphatase (IP). The phosphorylated IP binds and blocks phosphoprotein phosphatase, preventing it from dephosphorylating GPK, GP, or GS.

Once the extracellular stimulus is removed, cAMP levels decrease, switching off PKA. Inactive PKA cannot activate phosphoprotein phosphatase inhibitors. Thus, phosphoprotein phosphatase becomes active and removes phosphates from enzymes involved in glycogen degradation and synthesis. The dephosphorylation promotes glycogen synthesis and prevents glucose mobilization.

Contrarily to liver and muscle cells, epinephrine-induced activation of PKA in adipose cells leads to phosphorylation and activation of the enzyme lipase. The activated enzyme breaks down stored triglycerides to produce free fatty acids, which are used as an energy source by the kidney, heart, and muscle cells.

タグ
CAMPProtein Kinase A PKASecond MessengerGPCRAdenylyl CyclaseEpinephrineGlycogen MobilizationGlycogen Phosphorylase Kinase GPKGlycogen Phosphorylase GPGlycogen Synthase GSPhosphoprotein PhosphataseTriglyceridesLipaseCellular Response

章から 22:

article

Now Playing

22.6 : cAMP-dependent Protein Kinase Pathways

Gタンパク質共役型受容体のシグナル伝達ネットワーク

5.7K 閲覧数

article

22.1 : G タンパク質共役型受容体

Gタンパク質共役型受容体のシグナル伝達ネットワーク

10.3K 閲覧数

article

22.2 : Gタンパク質の活性化と不活性化

Gタンパク質共役型受容体のシグナル伝達ネットワーク

6.2K 閲覧数

article

22.3 : GPCR脱感作

Gタンパク質共役型受容体のシグナル伝達ネットワーク

5.2K 閲覧数

article

22.4 : Gタンパク質依存性イオンチャネル

Gタンパク質共役型受容体のシグナル伝達ネットワーク

3.9K 閲覧数

article

22.5 : GPCRはアデニリルシラーゼ活性を調節します

Gタンパク質共役型受容体のシグナル伝達ネットワーク

4.9K 閲覧数

article

22.7 : IP3/DAGシグナル伝達経路

Gタンパク質共役型受容体のシグナル伝達ネットワーク

10.9K 閲覧数

article

22.8 : カルシウム濃度のフィードバック制御

Gタンパク質共役型受容体のシグナル伝達ネットワーク

3.3K 閲覧数

article

22.9 : カルモジュリン依存性シグナル伝達

Gタンパク質共役型受容体のシグナル伝達ネットワーク

4.7K 閲覧数

article

22.10 : 一酸化窒素シグナル伝達経路

Gタンパク質共役型受容体のシグナル伝達ネットワーク

4.8K 閲覧数

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved