JoVE Logo

로그인

22.6 : cAMP-dependent Protein Kinase Pathways

Cyclic Adenosine Monophosphate (cAMP) is an essential second messenger that activates protein kinase A (PKA) and regulates various biological processes. A single epinephrine molecule binds to GPCR and activates several heterotrimeric G proteins, each stimulating multiple adenylyl cyclase, amplifying the signal, and synthesizing large numbers of cAMP molecules. Small changes in cAMP concentration affect PKA activity. The binding of four cAMP molecules induces a conformational change in PKA, dissociating the catalytic subunits from the regulatory subunit. Activated PKA can now phosphorylate serine/threonine residues of downstream target proteins and stimulate them to produce an appropriate cellular response. PKA can generate distinct responses in different cells by activating specific target proteins, even when stimulated by the same extracellular ligand.

In liver and muscle cells, epinephrine-bound G protein-coupled receptors (GPCR) cause a rise in cAMP levels. The increased cAMP further activates PKA to promote glucose mobilization in two ways.

  1. It phosphorylates glycogen phosphorylase kinase (GPK) and activates it. GPK further phosphorylates and activates glycogen phosphorylase (GP), which catalyzes the breakdown of glycogen into glucose 1-phosphate.
  2. PKA also phosphorylates and inhibits glycogen synthase (GS) and prevents glycogen synthesis.

In addition, PKA phosphorylates an inhibitor of phosphoprotein phosphatase (IP). The phosphorylated IP binds and blocks phosphoprotein phosphatase, preventing it from dephosphorylating GPK, GP, or GS.

Once the extracellular stimulus is removed, cAMP levels decrease, switching off PKA. Inactive PKA cannot activate phosphoprotein phosphatase inhibitors. Thus, phosphoprotein phosphatase becomes active and removes phosphates from enzymes involved in glycogen degradation and synthesis. The dephosphorylation promotes glycogen synthesis and prevents glucose mobilization.

Contrarily to liver and muscle cells, epinephrine-induced activation of PKA in adipose cells leads to phosphorylation and activation of the enzyme lipase. The activated enzyme breaks down stored triglycerides to produce free fatty acids, which are used as an energy source by the kidney, heart, and muscle cells.

Tags

CAMPProtein Kinase A PKASecond MessengerGPCRAdenylyl CyclaseEpinephrineGlycogen MobilizationGlycogen Phosphorylase Kinase GPKGlycogen Phosphorylase GPGlycogen Synthase GSPhosphoprotein PhosphataseTriglyceridesLipaseCellular Response

장에서 22:

article

Now Playing

22.6 : cAMP-dependent Protein Kinase Pathways

Signaling Networks of G Protein-coupled Receptors

6.1K Views

article

22.1 : G 단백질 결합 수용체

Signaling Networks of G Protein-coupled Receptors

11.2K Views

article

22.2 : G 단백질의 활성화 및 불활성화

Signaling Networks of G Protein-coupled Receptors

6.6K Views

article

22.3 : GPCR 둔감화

Signaling Networks of G Protein-coupled Receptors

5.7K Views

article

22.4 : G-단백질 개폐 이온 채널

Signaling Networks of G Protein-coupled Receptors

4.5K Views

article

22.5 : GPCR은 Adenylyl Cylase 활성을 조절합니다.

Signaling Networks of G Protein-coupled Receptors

5.2K Views

article

22.7 : IP3/DAG 신호 경로

Signaling Networks of G Protein-coupled Receptors

11.8K Views

article

22.8 : Feedback 칼슘 농도의 조절

Signaling Networks of G Protein-coupled Receptors

3.3K Views

article

22.9 : 칼모듈린 의존성 신호 전달

Signaling Networks of G Protein-coupled Receptors

5.1K Views

article

22.10 : 산화질소 신호 전달 경로

Signaling Networks of G Protein-coupled Receptors

4.9K Views

JoVE Logo

개인 정보 보호

이용 약관

정책

연구

교육

JoVE 소개

Copyright © 2025 MyJoVE Corporation. 판권 소유