サインイン

The ideal gas law is an approximation that works well at high temperatures and low pressures. The van der Waals equation of state (named after the Dutch physicist Johannes van der Waals, 1837−1923) improves it by considering two factors.

First, the attractive forces between molecules, which are stronger at higher densities and reduce the pressure, are considered by adding to the pressure a term equal to the square of the molar density multiplied by a positive coefficient a. Second, the volume of the molecules is represented by a positive constant b, which can be thought of as the volume of a mole of molecules. This is subtracted from the total volume to give the remaining volume that the molecules can move in. The constants a and b are determined experimentally for each gas. The resulting equation is

Equation1

For carbon dioxide gas with the van der Waals equation, constant a is 0.364 J·m3/mol2 and constant b is 4.27 x 10−5 m3/mol. If 1 mole of this gas is confined in a volume of 300 cm3 at 300 K, then the pressure of the gas can be calculated using the van der Waals equation. Rearranging the van der Waals equation for pressure,

Equation2

and substituting the known quantities in it,

Equation3

gives the pressure of carbon dioxide gas

Equation4

In the low-density limit (small n), the a and b terms are negligible, and the van der Waals equation reduces to the ideal gas law. On the other hand, if the second term from the van der Waals equation is small, meaning that the molecules are very close together, then the pressure must be higher to give the same nRT, as expected in the situation of a highly compressed gas. However, the increase in pressure is less than that argument would suggest because, at high densities, the pressure correction term from the van der Waals equation is significant. Since the pressure correction term is positive, it requires a lower pressure to give the same nRT. The van der Waals equation of state works well for most gases under various conditions, such as for predicting liquid-gas phase transitions.

タグ
Van Der Waals EquationIdeal Gas LawAttractive ForcesMolar DensityPressure CorrectionConstants A And BCarbon Dioxide GasVolumeHigh DensitiesLiquid gas Phase TransitionsExperimental DeterminationGas Behavior

章から 19:

article

Now Playing

19.3 : Van der Waals Equation

気体の運動理論

3.5K 閲覧数

article

19.1 : 状態方程式

気体の運動理論

1.6K 閲覧数

article

19.2 : 理想気体方程式

気体の運動理論

5.9K 閲覧数

article

19.4 : pVダイアグラム

気体の運動理論

3.7K 閲覧数

article

19.5 : 理想気体の運動論

気体の運動理論

3.1K 閲覧数

article

19.6 : 分子運動エネルギー

気体の運動理論

4.3K 閲覧数

article

19.7 : 分子速度の分布

気体の運動理論

3.4K 閲覧数

article

19.8 : マクスウェル・ボルツマン分布:問題解決

気体の運動理論

1.3K 閲覧数

article

19.9 : フェーズ図

気体の運動理論

5.5K 閲覧数

article

19.10 : 平均自由行程と平均自由時間

気体の運動理論

2.8K 閲覧数

article

19.11 : 熱容量:問題解決

気体の運動理論

439 閲覧数

article

19.12 : ダルトンの分圧の法則

気体の運動理論

1.2K 閲覧数

article

19.13 : ガスの脱出速度

気体の運動理論

832 閲覧数

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved