JoVE Logo

サインイン

19.6 : Molecular Kinetic Energy

The word "gas"comes from the Flemish word meaning "chaos," first used to describe vapors by the chemist J. B. van Helmont. Consider a container filled with gas, with a continuous and random motion of molecules. During collisions, the velocity component parallel to the wall is unchanged, and the component perpendicular to the wall reverses direction but does not change in magnitude. If the molecule’s velocity changes in the x-direction, then its momentum is changed. During the short time of the collision, each molecule exerts a force on the container's walls, which is the source of the pressure exerted by the gas. The exerted force can be expressed in terms of velocity, where the total velocity squared is the sum of the squares of its components (x-, y-, and z-directions). Further, by substituting the values and comparing them with the ideal gas equation, the average translational kinetic energy of n moles of an ideal gas can be determined. The obtained result shows that average translational kinetic energy is directly proportional to the absolute temperature.

The root-mean-square speed of the particles in a gas is defined as the square root of the average velocity squared of the molecules in a gas, while the average distance traveled and time between collisions is called the mean free path and mean free time, respectively. The mean free path is inversely proportional to the number of molecules per unit volume, and also inversely proportional to the cross-sectional area of a molecule; the larger the molecules or the higher the number of molecules, the shorter the mean distance between collisions.

タグ

Molecular Kinetic EnergyGasChaosJ B Van HelmontRandom MotionCollisionsVelocityMomentumPressureIdeal Gas EquationAverage Translational Kinetic EnergyAbsolute TemperatureRoot mean square SpeedMean Free PathMean Free Time

章から 19:

article

Now Playing

19.6 : Molecular Kinetic Energy

気体の運動理論

5.0K 閲覧数

article

19.1 : 状態方程式

気体の運動理論

1.6K 閲覧数

article

19.2 : 理想気体方程式

気体の運動理論

6.6K 閲覧数

article

19.3 : Van der Waals 方程式

気体の運動理論

3.9K 閲覧数

article

19.4 : pVダイアグラム

気体の運動理論

4.0K 閲覧数

article

19.5 : 理想気体の運動論

気体の運動理論

3.5K 閲覧数

article

19.7 : 分子速度の分布

気体の運動理論

3.9K 閲覧数

article

19.8 : マクスウェル・ボルツマン分布:問題解決

気体の運動理論

1.4K 閲覧数

article

19.9 : フェーズ図

気体の運動理論

5.7K 閲覧数

article

19.10 : 平均自由行程と平均自由時間

気体の運動理論

3.4K 閲覧数

article

19.11 : 熱容量:問題解決

気体の運動理論

488 閲覧数

article

19.12 : ダルトンの分圧の法則

気体の運動理論

1.3K 閲覧数

article

19.13 : ガスの脱出速度

気体の運動理論

889 閲覧数

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved