Zaloguj się

The word "gas"comes from the Flemish word meaning "chaos," first used to describe vapors by the chemist J. B. van Helmont. Consider a container filled with gas, with a continuous and random motion of molecules. During collisions, the velocity component parallel to the wall is unchanged, and the component perpendicular to the wall reverses direction but does not change in magnitude. If the molecule’s velocity changes in the x-direction, then its momentum is changed. During the short time of the collision, each molecule exerts a force on the container's walls, which is the source of the pressure exerted by the gas. The exerted force can be expressed in terms of velocity, where the total velocity squared is the sum of the squares of its components (x-, y-, and z-directions). Further, by substituting the values and comparing them with the ideal gas equation, the average translational kinetic energy of n moles of an ideal gas can be determined. The obtained result shows that average translational kinetic energy is directly proportional to the absolute temperature.

The root-mean-square speed of the particles in a gas is defined as the square root of the average velocity squared of the molecules in a gas, while the average distance traveled and time between collisions is called the mean free path and mean free time, respectively. The mean free path is inversely proportional to the number of molecules per unit volume, and also inversely proportional to the cross-sectional area of a molecule; the larger the molecules or the higher the number of molecules, the shorter the mean distance between collisions.

Tagi
Molecular Kinetic EnergyGasChaosJ B Van HelmontRandom MotionCollisionsVelocityMomentumPressureIdeal Gas EquationAverage Translational Kinetic EnergyAbsolute TemperatureRoot mean square SpeedMean Free PathMean Free Time

Z rozdziału 19:

article

Now Playing

19.6 : Molecular Kinetic Energy

The Kinetic Theory of Gases

4.3K Wyświetleń

article

19.1 : Równanie stanu

The Kinetic Theory of Gases

1.6K Wyświetleń

article

19.2 : Równanie gazu doskonałego

The Kinetic Theory of Gases

5.9K Wyświetleń

article

19.3 : Równanie Van der Waalsa

The Kinetic Theory of Gases

3.5K Wyświetleń

article

19.4 : Wykresy pV

The Kinetic Theory of Gases

3.7K Wyświetleń

article

19.5 : Teoria kinetyczna gazu doskonałego

The Kinetic Theory of Gases

3.1K Wyświetleń

article

19.7 : Rozkład prędkości molekularnych

The Kinetic Theory of Gases

3.4K Wyświetleń

article

19.8 : Rozkład Maxwella-Boltzmanna: rozwiązywanie problemów

The Kinetic Theory of Gases

1.3K Wyświetleń

article

19.9 : Diagram fazowy

The Kinetic Theory of Gases

5.5K Wyświetleń

article

19.10 : Średnia swobodna ścieżka i średni czas wolny

The Kinetic Theory of Gases

2.8K Wyświetleń

article

19.11 : Pojemność cieplna: rozwiązywanie problemów

The Kinetic Theory of Gases

440 Wyświetleń

article

19.12 : Prawo ciśnienia cząstkowego Daltona

The Kinetic Theory of Gases

1.2K Wyświetleń

article

19.13 : Prędkości ucieczki gazów

The Kinetic Theory of Gases

834 Wyświetleń

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone