JoVE Logo

サインイン

The current growth and decay in RL circuits can be understood by considering a series RL circuit consisting of a resistor, an inductor, a constant source of emf, and two switches. When the first switch is closed, the circuit is equivalent to a single-loop circuit consisting of a resistor and an inductor connected to a source of emf. In this case, the source of emf produces a current in the circuit. If there were no self-inductance in the circuit, the current would rise immediately to a steady value of ε/R. However, from Faraday's law, the increasing current produces an emf across the inductor, which has opposite polarity. In accordance with Lenz’s law, the induced emf counteracts the increase in the current. As a result, the current starts at zero and increases asymptotically to its final value. Thus, as the current approaches the maximum current ε/R, the stored energy in the inductor increases from zero and asymptotically approaches a maximum value. The growth of current with time is given by

Equation1

When the first switch is opened, and the second switch is closed, the circuit again becomes a single-loop circuit but with only a resistor and an inductor. Now, the initial current in the circuit is ε/R. The current starts from ε/R and decreases exponentially with time as the energy stored in the inductor is depleted. The decay of current with time is given by the relation

Equation2

The quantity inductance over resistance is given by

Equation3

measures how quickly the current builds toward its final value; this quantity is called the time constant for the circuit. When the current is plotted against time, It grows from zero and approaches ε/R asymptotically. At a time equal to time constant, the current rises to about 63%, of its final value, but during decaying, at the same time constant, it decreases to about 37%, of its original value.

タグ

Current GrowthCurrent DecayRL CircuitsResistorInductorSource Of EmfFaraday s LawLenz s LawTime ConstantEnergy StoredExponential DecayAsymptotic BehaviorCircuit Analysis

章から 31:

article

Now Playing

31.8 : Current Growth And Decay In RL Circuits

インダクタンス

3.6K 閲覧数

article

31.1 : 相互インダクタンス

インダクタンス

2.2K 閲覧数

article

31.2 : 自己インダクタンス

インダクタンス

2.3K 閲覧数

article

31.3 : 自己インダクタンスの計算

インダクタンス

245 閲覧数

article

31.4 : インダクタ

インダクタンス

5.3K 閲覧数

article

31.5 : 磁場中のエネルギー

インダクタンス

2.2K 閲覧数

article

31.6 : 同軸ケーブルに蓄えられたエネルギー

インダクタンス

1.3K 閲覧数

article

31.7 : RL回路

インダクタンス

2.4K 閲覧数

article

31.9 : RL回路とRC回路の比較

インダクタンス

3.6K 閲覧数

article

31.10 : LC回路

インダクタンス

2.3K 閲覧数

article

31.11 : LC回路の発振

インダクタンス

2.1K 閲覧数

article

31.12 : RLCシリーズ回路

インダクタンス

2.8K 閲覧数

article

31.13 : 減衰発振器としてのRLC回路

インダクタンス

794 閲覧数

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved