Entrar

The current growth and decay in RL circuits can be understood by considering a series RL circuit consisting of a resistor, an inductor, a constant source of emf, and two switches. When the first switch is closed, the circuit is equivalent to a single-loop circuit consisting of a resistor and an inductor connected to a source of emf. In this case, the source of emf produces a current in the circuit. If there were no self-inductance in the circuit, the current would rise immediately to a steady value of ε/R. However, from Faraday's law, the increasing current produces an emf across the inductor, which has opposite polarity. In accordance with Lenz’s law, the induced emf counteracts the increase in the current. As a result, the current starts at zero and increases asymptotically to its final value. Thus, as the current approaches the maximum current ε/R, the stored energy in the inductor increases from zero and asymptotically approaches a maximum value. The growth of current with time is given by

Equation1

When the first switch is opened, and the second switch is closed, the circuit again becomes a single-loop circuit but with only a resistor and an inductor. Now, the initial current in the circuit is ε/R. The current starts from ε/R and decreases exponentially with time as the energy stored in the inductor is depleted. The decay of current with time is given by the relation

Equation2

The quantity inductance over resistance is given by

Equation3

measures how quickly the current builds toward its final value; this quantity is called the time constant for the circuit. When the current is plotted against time, It grows from zero and approaches ε/R asymptotically. At a time equal to time constant, the current rises to about 63%, of its final value, but during decaying, at the same time constant, it decreases to about 37%, of its original value.

Tags
Current GrowthCurrent DecayRL CircuitsResistorInductorSource Of EmfFaraday s LawLenz s LawTime ConstantEnergy StoredExponential DecayAsymptotic BehaviorCircuit Analysis

Do Capítulo 31:

article

Now Playing

31.8 : Aumento e Decaimento da Corrente em Circuitos RL

Indutância

3.4K Visualizações

article

31.1 : Indutância mútua

Indutância

2.2K Visualizações

article

31.2 : Auto-indutância

Indutância

2.2K Visualizações

article

31.3 : Cálculo da Autoindutância

Indutância

207 Visualizações

article

31.4 : Indutores

Indutância

5.3K Visualizações

article

31.5 : Energia em um Campo Magnético

Indutância

2.1K Visualizações

article

31.6 : Energia Armazenada em um Cabo Coaxial

Indutância

1.3K Visualizações

article

31.7 : Circuitos RL

Indutância

2.3K Visualizações

article

31.9 : Comparação entre Circuitos RL e RC

Indutância

3.5K Visualizações

article

31.10 : Circuitos LC

Indutância

2.3K Visualizações

article

31.11 : Oscilações em um Circuito LC

Indutância

2.1K Visualizações

article

31.12 : Circuitos RLC em Série

Indutância

2.6K Visualizações

article

31.13 : Circuito RLC como um Oscilador Amortecido

Indutância

762 Visualizações

JoVE Logo

Privacidade

Termos de uso

Políticas

Pesquisa

Educação

SOBRE A JoVE

Copyright © 2025 MyJoVE Corporation. Todos os direitos reservados