サインイン

An idealized LC circuit of zero resistance can oscillate without any source of emf by shifting the energy stored in the circuit between the electric and magnetic fields. In such an LC circuit, if the capacitor contains a charge q before the switch is closed, then all the energy of the circuit is initially stored in the electric field of the capacitor. This energy is given by

Equation1

When the switch is closed, the capacitor begins to discharge, producing a current in the circuit. The current, in turn, creates a magnetic field in the inductor. The net effect of this process is a transfer of energy from the capacitor, with its diminishing electric field, to the inductor, with its increasing magnetic field. When the capacitor is completely discharged and all the energy is stored in the inductor's magnetic field, the current in the inductor is at its maximum value. At this instant, the energy stored in the inductor is given by

Equation2

At an arbitrary time, the capacitor charge and current varies with time. Therefore the total energy U in the circuit is given by

Equation3

Since there is no resistance in the circuit, no energy is lost through Joule heating; the energy in circuit remains conserved. After reaching the maximum current in the inductor, the current continues to transport charge between the capacitor plates, thereby recharging the capacitor. Since the inductor resists a change in current, current continues to flow, even though the capacitor is discharged. This continued current causes the capacitor to charge with opposite polarity. If there is no energy dissipation, charge on the capacitor plates continues to change polarity indefinitely, causing electrical oscillations. The angular frequency of these oscillations in the circuit is given by

Equation4

タグ
LC CircuitOscillationsElectric FieldMagnetic FieldCapacitor ChargeEnergy TransferCurrentInductorEnergy ConservationElectrical OscillationsAngular Frequency

章から 31:

article

Now Playing

31.11 : Oscillations In An LC Circuit

インダクタンス

2.1K 閲覧数

article

31.1 : 相互インダクタンス

インダクタンス

2.2K 閲覧数

article

31.2 : 自己インダクタンス

インダクタンス

2.2K 閲覧数

article

31.3 : 自己インダクタンスの計算

インダクタンス

207 閲覧数

article

31.4 : インダクタ

インダクタンス

5.3K 閲覧数

article

31.5 : 磁場中のエネルギー

インダクタンス

2.1K 閲覧数

article

31.6 : 同軸ケーブルに蓄えられたエネルギー

インダクタンス

1.3K 閲覧数

article

31.7 : RL回路

インダクタンス

2.3K 閲覧数

article

31.8 : RL回路の電流成長と減衰

インダクタンス

3.4K 閲覧数

article

31.9 : RL回路とRC回路の比較

インダクタンス

3.5K 閲覧数

article

31.10 : LC回路

インダクタンス

2.3K 閲覧数

article

31.12 : RLCシリーズ回路

インダクタンス

2.6K 閲覧数

article

31.13 : 減衰発振器としてのRLC回路

インダクタンス

762 閲覧数

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved