Anmelden

An idealized LC circuit of zero resistance can oscillate without any source of emf by shifting the energy stored in the circuit between the electric and magnetic fields. In such an LC circuit, if the capacitor contains a charge q before the switch is closed, then all the energy of the circuit is initially stored in the electric field of the capacitor. This energy is given by

Equation1

When the switch is closed, the capacitor begins to discharge, producing a current in the circuit. The current, in turn, creates a magnetic field in the inductor. The net effect of this process is a transfer of energy from the capacitor, with its diminishing electric field, to the inductor, with its increasing magnetic field. When the capacitor is completely discharged and all the energy is stored in the inductor's magnetic field, the current in the inductor is at its maximum value. At this instant, the energy stored in the inductor is given by

Equation2

At an arbitrary time, the capacitor charge and current varies with time. Therefore the total energy U in the circuit is given by

Equation3

Since there is no resistance in the circuit, no energy is lost through Joule heating; the energy in circuit remains conserved. After reaching the maximum current in the inductor, the current continues to transport charge between the capacitor plates, thereby recharging the capacitor. Since the inductor resists a change in current, current continues to flow, even though the capacitor is discharged. This continued current causes the capacitor to charge with opposite polarity. If there is no energy dissipation, charge on the capacitor plates continues to change polarity indefinitely, causing electrical oscillations. The angular frequency of these oscillations in the circuit is given by

Equation4

Tags
LC CircuitOscillationsElectric FieldMagnetic FieldCapacitor ChargeEnergy TransferCurrentInductorEnergy ConservationElectrical OscillationsAngular Frequency

Aus Kapitel 31:

article

Now Playing

31.11 : Oscillations In An LC Circuit

Inductance

2.1K Ansichten

article

31.1 : Gegeninduktivität

Inductance

2.2K Ansichten

article

31.2 : Selbstinduktivität

Inductance

2.2K Ansichten

article

31.3 : Berechnung der Selbstinduktivität

Inductance

205 Ansichten

article

31.4 : Induktivitäten

Inductance

5.3K Ansichten

article

31.5 : Energie in einem Magnetfeld

Inductance

2.1K Ansichten

article

31.6 : In einem Koaxialkabel gespeicherte Energie

Inductance

1.3K Ansichten

article

31.7 : RL-Strecken

Inductance

2.3K Ansichten

article

31.8 : Aktuelles Wachstum und Zerfall in RL-Schaltkreisen

Inductance

3.4K Ansichten

article

31.9 : Vergleich zwischen RL- und RC-Schaltungen

Inductance

3.5K Ansichten

article

31.10 : LC-Schaltungen

Inductance

2.3K Ansichten

article

31.12 : Schaltkreise der RLC-Serie

Inductance

2.6K Ansichten

article

31.13 : RLC-Schaltung als gedämpfter Oszillator

Inductance

760 Ansichten

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten