サインイン

Consider the gas molecules in a cylinder. They move in a random motion as they collide with each other and change speed and direction. The average of all the path lengths between collisions is known as the "mean free path."

Equation1

The mean free path varies inversely with the density of the molecules because when there are more molecules inside a volume, they have a greater chance of colliding with each other, thus reducing the mean free path. Additionally, the mean free path is inversely related to the diameter of the molecules because if they were point masses, they would never collide. Thus, larger molecules are associated with a shorter mean free path.

The gas expands when the temperature increases under constant pressure; thus, the average distance between molecules and the mean free path increases. However, when the pressure is increased at a constant temperature, the gas compresses, leading to a decrease in the mean free path. The mean free path can be defined as the product of the average speed and the mean free time, where the mean free time is the average time between collisions.

Consider argon atoms with a molar mass of 39.9 g/molmoving randomly in a cylinder at a temperature of 273 Kand a pressure of 1 atm. Taking the radius of an argon atom to be 1.70× 10-10m, determine the mean free time for argon atoms.

To solve the problem, first identify the known and unknown quantities, and convert them into SI units.

Secondly, recall the RMS speed equation for gas molecules. By substituting the values, the RMS speed can be determined as follows:

Equation2

Lastly, recall the mean free time equation. By substituting the values, the mean free time can be determined as follows:

Equation3

タグ
Mean Free PathMean Free TimeGas MoleculesCollisionsDensityDiameterAverage SpeedTemperaturePressureArgon AtomsMolar MassRMS Speed EquationSI Units

章から 19:

article

Now Playing

19.10 : Mean free path and Mean free time

気体の運動理論

2.8K 閲覧数

article

19.1 : 状態方程式

気体の運動理論

1.6K 閲覧数

article

19.2 : 理想気体方程式

気体の運動理論

5.9K 閲覧数

article

19.3 : Van der Waals 方程式

気体の運動理論

3.5K 閲覧数

article

19.4 : pVダイアグラム

気体の運動理論

3.7K 閲覧数

article

19.5 : 理想気体の運動論

気体の運動理論

3.1K 閲覧数

article

19.6 : 分子運動エネルギー

気体の運動理論

4.3K 閲覧数

article

19.7 : 分子速度の分布

気体の運動理論

3.4K 閲覧数

article

19.8 : マクスウェル・ボルツマン分布:問題解決

気体の運動理論

1.3K 閲覧数

article

19.9 : フェーズ図

気体の運動理論

5.5K 閲覧数

article

19.11 : 熱容量:問題解決

気体の運動理論

440 閲覧数

article

19.12 : ダルトンの分圧の法則

気体の運動理論

1.2K 閲覧数

article

19.13 : ガスの脱出速度

気体の運動理論

834 閲覧数

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved