Войдите в систему

Consider the gas molecules in a cylinder. They move in a random motion as they collide with each other and change speed and direction. The average of all the path lengths between collisions is known as the "mean free path."

Equation1

The mean free path varies inversely with the density of the molecules because when there are more molecules inside a volume, they have a greater chance of colliding with each other, thus reducing the mean free path. Additionally, the mean free path is inversely related to the diameter of the molecules because if they were point masses, they would never collide. Thus, larger molecules are associated with a shorter mean free path.

The gas expands when the temperature increases under constant pressure; thus, the average distance between molecules and the mean free path increases. However, when the pressure is increased at a constant temperature, the gas compresses, leading to a decrease in the mean free path. The mean free path can be defined as the product of the average speed and the mean free time, where the mean free time is the average time between collisions.

Consider argon atoms with a molar mass of 39.9 g/molmoving randomly in a cylinder at a temperature of 273 Kand a pressure of 1 atm. Taking the radius of an argon atom to be 1.70× 10-10m, determine the mean free time for argon atoms.

To solve the problem, first identify the known and unknown quantities, and convert them into SI units.

Secondly, recall the RMS speed equation for gas molecules. By substituting the values, the RMS speed can be determined as follows:

Equation2

Lastly, recall the mean free time equation. By substituting the values, the mean free time can be determined as follows:

Equation3

Теги
Mean Free PathMean Free TimeGas MoleculesCollisionsDensityDiameterAverage SpeedTemperaturePressureArgon AtomsMolar MassRMS Speed EquationSI Units

Из главы 19:

article

Now Playing

19.10 : Mean free path and Mean free time

The Kinetic Theory of Gases

2.8K Просмотры

article

19.1 : Уравнение государства

The Kinetic Theory of Gases

1.6K Просмотры

article

19.2 : Уравнение идеального газа

The Kinetic Theory of Gases

5.9K Просмотры

article

19.3 : Уравнение Ван дер Ваальса

The Kinetic Theory of Gases

3.5K Просмотры

article

19.4 : pV-диаграммы

The Kinetic Theory of Gases

3.7K Просмотры

article

19.5 : Кинетическая теория идеального газа

The Kinetic Theory of Gases

3.1K Просмотры

article

19.6 : Молекулярная кинетическая энергия

The Kinetic Theory of Gases

4.3K Просмотры

article

19.7 : Распределение молекулярных скоростей

The Kinetic Theory of Gases

3.4K Просмотры

article

19.8 : Распределение Максвелла-Больцмана: решение проблем

The Kinetic Theory of Gases

1.3K Просмотры

article

19.9 : Фазовая диаграмма

The Kinetic Theory of Gases

5.5K Просмотры

article

19.11 : Теплоемкость: решение проблем

The Kinetic Theory of Gases

440 Просмотры

article

19.12 : Закон парциального давления Дальтона

The Kinetic Theory of Gases

1.2K Просмотры

article

19.13 : Скорости усвоения газов

The Kinetic Theory of Gases

834 Просмотры

JoVE Logo

Исследования

Образование

О JoVE

Авторские права © 2025 MyJoVE Corporation. Все права защищены