JoVE Logo

サインイン

When an electric field passes from one homogeneous medium to another, crossing the boundary between the two mediums imparts a discontinuity in the electric field. This results in electrostatic boundary conditions that depend on the type of mediums the field propagates through.

Consider a case where both the mediums across a boundary are two different dielectric materials. Recall that the electric field and electric displacement are proportional and related through the material's permittivity. Substituting the electric field in the electrostatic boundary conditions with the electric displacement shows that the tangential component of the electric displacement is discontinuous across the interface. But for the same case, the electric field is continuous. Similarly, the normal component of the electric field is discontinuous across the interface. However, the normal component of the electric displacement is continuous if there are no free charges at the boundary.

Equation1

Equation2

Consider replacing one of the dielectric materials with a perfect conductor. Applying the electric field inside a perfect conductor as zero gives the boundary conditions for a conductor-dielectric interface. If the other dielectric is removed, the material's permittivity equals free space's permittivity, as the dielectric constant's value for free space is 1. Substituting this in the conductor-dielectric boundary conditions gives the boundary conditions for a conductor-free space interface.

タグ

Electrostatic Boundary ConditionsDielectricsElectric FieldElectric DisplacementPermittivityTangential ComponentNormal ComponentPerfect ConductorConductor dielectric InterfaceFree ChargesFree SpaceDielectric Constant

章から 25:

article

Now Playing

25.12 : Electrostatic Boundary Conditions in Dielectrics

静電容量

1.0K 閲覧数

article

25.1 : コンデンサとキャパシタンス

静電容量

7.3K 閲覧数

article

25.2 : 球形および円筒形コンデンサ

静電容量

5.3K 閲覧数

article

25.3 : 直列および並列のコンデンサ

静電容量

3.9K 閲覧数

article

25.4 : 等価静電容量

静電容量

1.3K 閲覧数

article

25.5 : コンデンサに蓄えられたエネルギー

静電容量

3.5K 閲覧数

article

25.6 : コンデンサに蓄積されたエネルギー:問題解決

静電容量

1.0K 閲覧数

article

25.7 : 誘電体付きコンデンサ

静電容量

3.8K 閲覧数

article

25.8 : コンデンサの誘電体分極

静電容量

4.5K 閲覧数

article

25.9 : 誘電体におけるガウスの法則

静電容量

4.1K 閲覧数

article

25.10 : 偏光物体による電位

静電容量

346 閲覧数

article

25.11 : 感受性、誘電率、誘電率

静電容量

1.3K 閲覧数

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved