Anmelden

When an electric field passes from one homogeneous medium to another, crossing the boundary between the two mediums imparts a discontinuity in the electric field. This results in electrostatic boundary conditions that depend on the type of mediums the field propagates through.

Consider a case where both the mediums across a boundary are two different dielectric materials. Recall that the electric field and electric displacement are proportional and related through the material's permittivity. Substituting the electric field in the electrostatic boundary conditions with the electric displacement shows that the tangential component of the electric displacement is discontinuous across the interface. But for the same case, the electric field is continuous. Similarly, the normal component of the electric field is discontinuous across the interface. However, the normal component of the electric displacement is continuous if there are no free charges at the boundary.

Equation1

Equation2

Consider replacing one of the dielectric materials with a perfect conductor. Applying the electric field inside a perfect conductor as zero gives the boundary conditions for a conductor-dielectric interface. If the other dielectric is removed, the material's permittivity equals free space's permittivity, as the dielectric constant's value for free space is 1. Substituting this in the conductor-dielectric boundary conditions gives the boundary conditions for a conductor-free space interface.

Tags

Electrostatic Boundary ConditionsDielectricsElectric FieldElectric DisplacementPermittivityTangential ComponentNormal ComponentPerfect ConductorConductor dielectric InterfaceFree ChargesFree SpaceDielectric Constant

Aus Kapitel 25:

article

Now Playing

25.12 : Electrostatic Boundary Conditions in Dielectrics

Capacitance

958 Ansichten

article

25.1 : Kondensatoren und Kapazität

Capacitance

7.1K Ansichten

article

25.2 : Sphärischer und zylindrischer Kondensator

Capacitance

5.2K Ansichten

article

25.3 : Kondensatoren in Reihe und parallel

Capacitance

3.7K Ansichten

article

25.4 : Äquivalente Kapazität

Capacitance

1.3K Ansichten

article

25.5 : In einem Kondensator gespeicherte Energie

Capacitance

3.5K Ansichten

article

25.6 : In einem Kondensator gespeicherte Energie: Problemlösung

Capacitance

980 Ansichten

article

25.7 : Kondensator mit einem Dielektrikum

Capacitance

3.7K Ansichten

article

25.8 : Dielektrische Polarisation in einem Kondensator

Capacitance

4.4K Ansichten

article

25.9 : Gaußsches Gesetz in Dielektrika

Capacitance

4.0K Ansichten

article

25.10 : Potenzial aufgrund eines polarisierten Objekts

Capacitance

332 Ansichten

article

25.11 : Suszeptibilität, Permittivität und Dielektrizitätskonstante

Capacitance

1.2K Ansichten

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten