サインイン

The total amount of current flowing per unit cross-sectional area is called the current density. Hence, the current passing through a cross-sectional area can be written as the surface integral of the current density.

Equation1

According to the conservation of charge, the total current flowing out of a given volume equals the rate of decrease of charge within that volume.

Equation2

Now, the total charge can be written in terms of the volume charge density.

Equation3

The charge density is a space function. Hence, applying the Leibniz rule, the time derivative can be moved inside the integral.

Equation4

When the divergence theorem is applied to the left-hand side of the above equation, the closed surface integral is converted into the volume integral.

Equation5

Since this relation holds for any volume, the integrands are equal and the obtained relation is called the continuity equation. This states that the divergence of the current density equals the negative rate of change of volume charge density.

Equation6

For steady currents, the charge density is invariant with time. Hence, the divergence of the current density is zero.

タグ
Continuity EquationCurrent DensityCharge ConservationSurface IntegralVolume Charge DensityLeibniz RuleDivergence TheoremVolume IntegralSteady CurrentsNegative Rate Of Change

章から 26:

article

Now Playing

26.10 : Continuity Equation

電流と抵抗

695 閲覧数

article

26.1 : 電流

電流と抵抗

5.2K 閲覧数

article

26.2 : ドリフト速度

電流と抵抗

3.7K 閲覧数

article

26.3 : 電流密度

電流と抵抗

3.6K 閲覧数

article

26.4 : 比 抵抗

電流と抵抗

3.2K 閲覧数

article

26.5 : 抵抗

電流と抵抗

4.0K 閲覧数

article

26.6 : オームの法則

電流と抵抗

5.1K 閲覧数

article

26.7 : 非オーミックデバイス

電流と抵抗

962 閲覧数

article

26.8 : 電力

電流と抵抗

2.9K 閲覧数

article

26.9 : 電気エネルギー

電流と抵抗

1.1K 閲覧数

article

26.11 : 電流密度の境界条件

電流と抵抗

712 閲覧数

article

26.12 : 電気伝導率

電流と抵抗

992 閲覧数

article

26.13 : 金属伝導の理論

電流と抵抗

1.2K 閲覧数

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved