Intrinsic semiconductors are highly pure materials with no impurities. At absolute zero, these semiconductors behave as perfect insulators because all the valence electrons are bound, and the conduction band is empty, disallowing electrical conduction. The Fermi level is a concept used to describe the probability of occupancy of energy levels by electrons at thermal equilibrium. In intrinsic semiconductors, the Fermi level is positioned at the midpoint of the energy gap at absolute zero. When the temperature of the semiconductor increases, thermal energy excites some electrons from the valence band to the conduction band, creating electron-hole pairs (EHPs). The creation of EHPs enables conduction because electrons can move freely in the conduction band and holes can act like positive charge carriers in the valence band.

The intrinsic carrier concentration, denoted as ni, is the number of free electrons or holes in a pure semiconductor at thermal equilibrium. It is a temperature-dependent value and can be expressed by the formula:

Equation 1

Where B is a material constant, T is the temperature, Eg is the band gap energy, and k is the Boltzmann constant.

At any temperature above absolute zero, EHPs are generated at a rate gi, and they recombine at a rate ri. For the semiconductor to maintain thermal equilibrium, these rates must be equal. The recombination rate is proportional to the product of the electron (n0) and hole (p0) concentrations, described by:

Equation 2

where αr is the recombination coefficient.

Intrinsic semiconductors can be altered to become extrinsic semiconductors by doping, which introduces impurities to change the material's electrical properties. Doping intrinsic semiconductors with pentavalent atoms creates N-type materials by adding free electrons. Conversely, trivalent dopants yield P-type materials with prevalent holes, shifting the Fermi level towards the valence band, thus modifying the semiconductor's conductive properties.

タグ
SemiconductorsIntrinsic SemiconductorsPure MaterialsFermi LevelThermal EquilibriumElectron hole PairsConduction BandValence BandIntrinsic Carrier ConcentrationBand Gap EnergyThermal EnergyDopingN type MaterialsP type MaterialsElectrical Properties

章から 10:

article

Now Playing

10.3 : Types of Semiconductors

半導体の基礎

309 閲覧数

article

10.1 : 固体中のエネルギーバンド

半導体の基礎

339 閲覧数

article

10.2 : 半導体

半導体の基礎

343 閲覧数

article

10.4 : キャリアの生成と再結合

半導体の基礎

320 閲覧数

article

10.5 : キャリアトランスポート

半導体の基礎

286 閲覧数

article

10.6 : PN接合

半導体の基礎

262 閲覧数

article

10.7 : PN接合のバイアス

半導体の基礎

246 閲覧数

article

10.8 : 金属-半導体接合

半導体の基礎

168 閲覧数

article

10.9 : 金属-半導体接合のバイアス

半導体の基礎

137 閲覧数

article

10.10 : フェルミレベル

半導体の基礎

269 閲覧数

article

10.11 : フェルミレベルダイナミクス

半導体の基礎

151 閲覧数

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved