The MOSFET, when operating in its active region, functions as a voltage-controlled current source. In this region, the gate-to-source voltage controls the drain current. This principle underlies the operation of the transconductance MOSFET amplifier. The output current is directed through a load resistor to convert this amplifier into a voltage amplifier. The output voltage is then obtained by subtracting the voltage drop across the load resistance from the supply voltage. This process results in an inverted output voltage that is shifted by the supply voltage.

The voltage-transfer characteristic plot of the amplifier illustrates the relationship between the output drain voltage and the input gate voltage. This plot is crucial for understanding the amplifier's behavior. It highlights the amplifier's active region, where the slope of the curve is steep, indicating maximum gain. However, this region is also nonlinear in terms of drain voltage.

A DC voltage bias is applied to the gate-to-source junction to achieve nearly linear amplification, positioning the MOSFET at a quiescent point (Q-point) within the active region. This biasing ensures that the MOSFET operates in a region where its behavior is approximately linear. When a small, time-varying signal is superimposed onto this DC bias voltage, it causes the MOSFET to operate around the Q-point. The MOSFET, as a result, functions within a short, nearly linear segment of its characteristic curve, resulting in an amplified output drain voltage.

In practical applications, this setup allows the MOSFET amplifier to amplify small AC signals effectively. The amplification occurs because the small input signal modulates the gate voltage around the Q-point, causing proportional variations in the drain current. These variations are translated into a larger output voltage across the load resistor, as a result achieving amplification.

タグ
MOSFETVoltage controlled Current SourceActive RegionDrain CurrentTransconductance AmplifierVoltage AmplifierOutput VoltageLoad ResistorVoltage transfer CharacteristicGainNonlinear BehaviorDC Voltage BiasQuiescent Point Q pointLinear AmplificationAC SignalsAmplified Output Voltage

章から 12:

article

Now Playing

12.19 : MOSFET Amplifiers

トランジスタ

84 閲覧数

article

12.1 : バイポーラ接合トランジスタ

トランジスタ

258 閲覧数

article

12.2 : BJT の構成

トランジスタ

183 閲覧数

article

12.3 : BJTの動作原理

トランジスタ

141 閲覧数

article

12.4 : BJTの特徴

トランジスタ

445 閲覧数

article

12.5 : BJTの動作モード

トランジスタ

628 閲覧数

article

12.6 : BJTの周波数特性

トランジスタ

414 閲覧数

article

12.7 : BJTのカットオフ周波数

トランジスタ

365 閲覧数

article

12.8 : BJTの切り替え

トランジスタ

248 閲覧数

article

12.9 : BJTアンプ

トランジスタ

168 閲覧数

article

12.10 : BJTアンプの小信号解析

トランジスタ

581 閲覧数

article

12.11 : 電界効果トランジスタ

トランジスタ

125 閲覧数

article

12.12 : JFETの特徴

トランジスタ

165 閲覧数

article

12.13 : FETのバイアス

トランジスタ

116 閲覧数

article

12.14 : MOSコンデンサ

トランジスタ

461 閲覧数

See More

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved