The MOSFET, when operating in its active region, functions as a voltage-controlled current source. In this region, the gate-to-source voltage controls the drain current. This principle underlies the operation of the transconductance MOSFET amplifier. The output current is directed through a load resistor to convert this amplifier into a voltage amplifier. The output voltage is then obtained by subtracting the voltage drop across the load resistance from the supply voltage. This process results in an inverted output voltage that is shifted by the supply voltage.

The voltage-transfer characteristic plot of the amplifier illustrates the relationship between the output drain voltage and the input gate voltage. This plot is crucial for understanding the amplifier's behavior. It highlights the amplifier's active region, where the slope of the curve is steep, indicating maximum gain. However, this region is also nonlinear in terms of drain voltage.

A DC voltage bias is applied to the gate-to-source junction to achieve nearly linear amplification, positioning the MOSFET at a quiescent point (Q-point) within the active region. This biasing ensures that the MOSFET operates in a region where its behavior is approximately linear. When a small, time-varying signal is superimposed onto this DC bias voltage, it causes the MOSFET to operate around the Q-point. The MOSFET, as a result, functions within a short, nearly linear segment of its characteristic curve, resulting in an amplified output drain voltage.

In practical applications, this setup allows the MOSFET amplifier to amplify small AC signals effectively. The amplification occurs because the small input signal modulates the gate voltage around the Q-point, causing proportional variations in the drain current. These variations are translated into a larger output voltage across the load resistor, as a result achieving amplification.

Tags
MOSFETVoltage controlled Current SourceActive RegionDrain CurrentTransconductance AmplifierVoltage AmplifierOutput VoltageLoad ResistorVoltage transfer CharacteristicGainNonlinear BehaviorDC Voltage BiasQuiescent Point Q pointLinear AmplificationAC SignalsAmplified Output Voltage

Dal capitolo 12:

article

Now Playing

12.19 : MOSFET Amplifiers

Transistors

87 Visualizzazioni

article

12.1 : Transistor a giunzione bipolare

Transistors

264 Visualizzazioni

article

12.2 : Configurazioni di BJT

Transistors

187 Visualizzazioni

article

12.3 : Principio di funzionamento di BJT

Transistors

147 Visualizzazioni

article

12.4 : Caratteristiche del BJT

Transistors

449 Visualizzazioni

article

12.5 : Modalità operative di BJT

Transistors

636 Visualizzazioni

article

12.6 : Risposta in frequenza di BJT

Transistors

428 Visualizzazioni

article

12.7 : Frequenza di taglio del BJT

Transistors

376 Visualizzazioni

article

12.8 : Commutazione di BJT

Transistors

251 Visualizzazioni

article

12.9 : Amplificatori BJT

Transistors

173 Visualizzazioni

article

12.10 : Analisi di piccoli segnali di amplificatori BJT

Transistors

594 Visualizzazioni

article

12.11 : Transistor ad effetto di campo

Transistors

130 Visualizzazioni

article

12.12 : Caratteristiche di JFET

Transistors

168 Visualizzazioni

article

12.13 : Distorsione di FET

Transistors

116 Visualizzazioni

article

12.14 : Condensatore MOS

Transistors

464 Visualizzazioni

See More

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati