Method Article
Sharp microelectrodes enable accurate electrophysiological characterization of photoreceptor and visual interneuron output in living Drosophila. Here we show how to use this method to record high-quality voltage responses of individual cells to controlled light stimulation. This method is ideal for studying neural information processing in insect compound eyes.
Voltage responses of insect photoreceptors and visual interneurons can be accurately recorded with conventional sharp microelectrodes. The method described here enables the investigator to measure long-lasting (from minutes to hours) high-quality intracellular responses from single Drosophila R1-R6 photoreceptors and Large Monopolar Cells (LMCs) to light stimuli. Because the recording system has low noise, it can be used to study variability among individual cells in the fly eye, and how their outputs reflect the physical properties of the visual environment. We outline all key steps in performing this technique. The basic steps in constructing an appropriate electrophysiology set-up for recording, such as design and selection of the experimental equipment are described. We also explain how to prepare for recording by making appropriate (sharp) recording and (blunt) reference electrodes. Details are given on how to fix an intact fly in a bespoke fly-holder, prepare a small window in its eye and insert a recording electrode through this hole with minimal damage. We explain how to localize the center of a cell's receptive field, dark- or light-adapt the studied cell, and to record its voltage responses to dynamic light stimuli. Finally, we describe the criteria for stable normal recordings, show characteristic high-quality voltage responses of individual cells to different light stimuli, and briefly define how to quantify their signaling performance. Many aspects of the method are technically challenging and require practice and patience to master. But once learned and optimized for the investigator's experimental objectives, it grants outstanding in vivo neurophysiological data.
ミバエ( キイロショウジョウバエ )複眼は、神経画像サンプリングおよび処理のための感光体と介在ニューロンの配列の機能的な組織を調査するのに最適なモデルシステムであり、動物のビジョンのために。システムは、最も完全な配線図1,2を有しており、遺伝子操作および3-10(高い信号対雑音比と時間分解能の)正確な神経活動の監視に愛想です。
ショウジョウバエの目は一緒にその頭の周りのほぼすべての方向をカバーするパノラマ視野を飛ぶ提供個眼と呼ばれる〜750一見、通常のレンズキャップされた構造を含む、モジュール化されています。目の一次情報サンプリングユニットは、そのrhabdomeric光受容体7,8,11です。それぞれの個眼は、同じファセットレンズを共有する8光受容体細胞(R1-R8)を含むが、7つの異なる方向に整列されます。外光受容体R1-R6 ARながら青緑色の光、同じ方向に互いの上部と点に横たわる内側の細胞R7およびR8の分光感度、展示3独特のサブタイプに電子最も敏感:、淡い黄色と背側リムエリア(DRA)12- 15。
図1. ショウジョウバエ の目 の機能組織 。 (A)は、2つの第1の光学要素神経節、網膜およびラミナは、フライアイ内側の灰色で強調されています。網膜R1-R6の光受容体とラミナ大モノポーラ細胞(LMCS:L1-L3)は、従来の鋭い微小電極記録に生体内で容易にアクセスできます。模式電極は、網膜にR1-R6から記録するために通常のパスを強調しています。ラミナにLMCSから録音するための一つのパスを左に平行電極にシフトすることです。 (B)ラミナはretinotopically臓器のマトリックスであります視覚空間内の特定の小さな領域からの情報を処理するニューロンが詰め込まれて、それぞれが化さカートリッジ。神経重ね合わせのために、異なる隣接個眼から6の感光体は、L1〜L3とアマクリン細胞(アム)のヒスタミン出力シナプスを形成し、同じラミナカートリッジにその軸索(R1-R6)を送信します。ラミナカートリッジ内の(C)R1-R6の軸索末端と(L4、L5、Lawf、C2、C3とT1を含む)視覚介在ニューロン間の神経情報の普及は、複雑です。 (D)R1-R6の感光体の軸索は、L2とL4単極細胞からシナプスフィードバックを受けます。リベラ・アルバら2から変更された(B)及び(C)。 この図の拡大版をご覧になるにはこちらをクリックしてください。
ショウジョウバエの目は、神経重畳型16です。これは、トンを意味します帽子空間内の同じ点を見て7、隣接個眼に属する8の光受容体の神経信号は、次の2 neuropils内の1つの神経カートリッジで一緒にプールされていますラミナおよび髄質。 6外光受容体R1-R6プロジェクトラミナにおける神経の列への軸索の端末( 図1)が、R7およびR8細胞は、この層をバイパスし、それらに対応する髄質列17-19とのシナプス接触を行います。これらの正確な配線はすべてのラミナ( 図1A-C)その後、フライ初期視覚の網膜マッピングのための神経基盤を生成し、髄質カラム(カートリッジ)は、空間内の単一の点を表します。
ラミナ1,2,20およびアマクリン細胞(アム):R1-R6の光受容体からの直接入力が大型単極細胞(L1、L2とL3 LMCS)によって受信されます。これらのうち、L1、L2は、( 図1D)の主要な情報伝達経路を媒介する、WHIの最大の細胞でありますchのエッジをオンとオフの移動に応答し、したがって、動き検出器21,22の計算基礎を形成します。 L2細胞23,24におけるL1中にフロント、バックとフロントツーバック:行動実験は、中間対照的に、二つの経路が反対方向の運動知覚を促進することを示唆しています。接続は、さらにL4ニューロンは、隣接カートリッジ25,26間の横方向の通信において重要な役割を果たし得ることを意味します。逆数シナプスは、L2とL4同じに位置するセルと隣接する二つのカートリッジの間で発見されました。下流では、各L2細胞およびその関連する3つのL4細胞は、共通の目標に隣接カートリッジからの入力は、前面から背面への運動27の処理のために統合されると考えられている髄質、中Tm2がニューロンをその軸索を投射します。 L1のニューロンは、両方のギャップ結合とシナプスを介して、同じカートリッジL2Sからの入力を受け取るが、それらは直接L4sので、隣接するラミナカートリッジに接続されていません。
R1-R6の感光体の軸索へのシナプスのフィードバックは、L2 / L4回路に属するニューロンによってのみ提供されていなく、L1経路1,2( 図1D)。同じカートリッジの接続は、L2からR1とR2およびL4からR5に選択されている一方で、すべてのR1-R6の光受容体は、いずれかのL4または両方の隣接カートリッジからシナプスフィードバックを受けます。また、R1、R2、R4及びR5の時から強いシナプス結合が存在し、およびグリア細胞は、シナプスネットワークに接続され、従って、神経画像処理6に参加することができます。最後に、薄層に隣接したR1-R6をリンクし、R6およびR7 / R8光受容体との間に、ギャップジャンクション軸索は、各カートリッジ14,20,28における非対称情報の表現と処理に貢献しています。ほぼ無傷のショウジョウバエの個々の光受容体と視覚介在ニューロンからの細胞内の電圧の記録は高い信号対雑音Rを提供します接続されたニューロン間の高速神経計算の意味を理解するために必要なサブミリ秒の分解能3,5,7-10,29、のデータatio。 100ミリ秒の解像度 - 高精度のこのレベルは、有意に騒々しいであり、典型的には10で動作する現在の光イメージング技術によっては不可能です。電極は非常に小さく、鋭い先端を有するのでさらに、方法は、細胞体に限定されるものではないが、小さなアクティブ神経構造からの直接録音を提供することができます。このようなパッチクランプ電極のはるかに大きなヒントがアクセスすることはできませんLMCS「樹状突起や感光体の軸索、など。重要なことは、この方法は、ほとんどのパッチクランプのアプリケーションよりも構造的に低侵襲性および損傷であるので、あまり研究され、細胞の細胞内環境と情報のサンプリングに影響を与えます。このように、従来の鋭い微小電極技術が貢献し、かつ神経フォアに寄与し、基本的な発見やオリジナルの洞察に維持しています適切な時間スケールでの報処理;ビジョン3-10の我々のメカニズムの理解を向上させることができます。
この記事では、ショウジョウバエ R1-R6の光受容体とLMCSからin vivoでの細胞内記録はJuusolaの実験室で行われている方法について説明します。このプロトコルは、適切な電気生理学リグを構築する方法について説明フライを準備し、録音を行います。いくつかの代表的なデータが提示され、いくつかの一般的な問題や潜在的な解決策は、この方法を使用するときに遭遇する可能性があるという議論されています。
以下のプロトコルは、シェフィールド大学と北京師範大学の全ての動物保護ガイドラインに準拠しています。
1.試薬および器具の準備
図2. コニカルフライホルダーフライホルダが2枚から構成されています。中央真鍮ユニットとその円錐形の黒いプラスチック製のコート。真鍮ユニット内部の中央の穴がやっとを通してフライをすることができます小径に先細になっている。 この図の拡大版をご覧になるにはこちらをクリックしてください。
電気生理学的リグの 図3. 概要。セットアップは、銅やアルミニウムメッシュのために内部で自立遮光ファラデーケージ、除振台、フライ刺激と記録装置、および黒の生地のカーテンが含まれています接地。インtrumentラックは、ファラデーケージ内のすべての機器と同じ中央グランドに電気的に接続されている。 この図の拡大版をご覧になるにはこちらをクリックしてください。
2.ショウジョウバエの準備
Figur電子4. ツールとクレビスはフライの準備を作成するために必要です。キャッチチューブを50mlプラスチック遠心管に1ミリリットルプラスチックピペットチップを接着することにより行われるフライ。別注フライ準備スタンドはフライを調製するための好ましい位置にフライホルダーの自由な回転とロックを可能にします。ハエは、電気ワックスヒーターを用いて、蜜蝋により固定されています。ワセリンは、ハンドル上に厚いソート髪を接続することによって作られた小さなアプリケータによって適用されている。 この図の拡大版をご覧になるにはこちらをクリックしてください。
in vivo 実験 のためにフライを準備 図5.。 左 、 ショウジョウバエの頭はまっすぐフライホルダー内に配置し、加熱することで、フライホルダーにその口吻、右眼と肩から固定されています。eswax。 右は 、小さな開口部が鋭利なカミソリのエッジを使用して、ちょうど赤道と離れて戻ってキューティクルからわずか数個眼の上に、目の最も厚い部分で切断されています。角膜の一部を穏やかに除去され、穴は、最大乾燥から目を防ぐために、石油ゼリーで封止されている。 この図の拡大版をご覧になるにはこちらをクリックしてください。
R1-R6感光体またはLMCS 3.録音
図6. ポジショニングフライホルダーと実験のための電極 (AB)フライホルダーはまた、ペルチェ素子(A:中央に白い丸いプラットフォーム)を介して温度制御を提供する記録プラットフォーム上に配置されます。カルダン・アームは、光源(液体又は石英光ファイバ束の端)が直接その目を指しているとフライの周りの(x、y-回転を介して)等しい距離での光刺激の正確な位置決めを可能にします。 OUの多くでrのリグは、光刺激が(リニア電流ドライバと)またはモノクロメータによりLEDによって生成されます。このように、彼らの刺激は300の間で選択された特定の(バンド渡された)スペクトル内容、運ぶ - 740 nmのをし、4カバー - 6対数強度ユニットの範囲を(別々のNDフィルターによって減衰されるように)。別々のマイクロマニピュレーターによって制御される(C)二つの微小電極は、ハエの頭の中に配置されている:単眼を介して基準電極を(上記);左目の小さな開口部を介して記録電極(左)。感光記録の最大数を得るために(D)は 、記録用微小電極を穴に駆動され、吻-単眼軸に平行です。感光体への電極チップが貫通及びシールは、自由に回転可能な光源は、セルが所定の光刺激に対する最大電圧応答を生成する位置に固定されているとき。空間でのこの点は、細胞の受容野の中心に位置しています。穴私の場合キューティクルに近いのは、LMCの貫通部は、さらに、この同じ電極角(左)を用いて達成することができます。穴はキューティクルから遠い場合は、LMCの録音を得るための別の有用な電極進入角も(右)が示されている。 この図の拡大版をご覧になるにはこちらをクリックしてください。
鋭い微小電極記録方法は、 ショウジョウバエの眼のためにここに適合したように、確実に神経情報サンプリングおよび処理網膜および薄層細胞において、それらの間の通信4,5,7,8,10,33を定量化するために使用することができます。別の野生型株、変異体または遺伝子操作フライ株における符号化を研究するためにそれを使用することにより、この方法は、その価値を証明しています。だけでなく、突然変異、温度、食事または選択した式3,4,6,9,10,14,30,34の効果を定量化ではなく、変更された視覚的な行動14,34のための機構的な理由を明らかにしました。この方法はまた、neuroethologicalビジョンの研究に力を与える他の昆虫の製剤35,36、に容易に適用可能です。次に、その成功したアプリケーションのいくつかの例を紹介しました。
図7. 電圧20および25 O℃で光パルスにミバエR1-R6感光体の応答鋭い微小電極の貫通部には、多くの場合、非常に安定しているので、で与えられた光刺激に対して同じR1-R6の感光体の電圧応答を記録することができますハエを温めるまたは冷却することにより、異なる周囲温度。我々のセットアップでは、フライホルダーは閉ループペルチェ素子に基づく温度制御システムに配置されています。これは、秒単位でハエの頭の温度を変更することを可能にします。より高い温度は、電圧応答を加速し、特徴(赤い矢印で示されているように)R1-R6の光受容体の静止電位を低下させる。 この図の拡大版をご覧になるにはこちらをクリックしてください。
感光体の出力に及ぼす温度の影響を研究
うまく設計及び振動絶縁記録システムでは、この方法は、加温することにより、個々の細胞の神経出力に対する温度の影響を測定するか、フライを冷却するために使用することができます。与えられた例では、20と25°Cの ( 図7)で同じR1-R6の感光体に記録された明るい10ミリ秒の長パルス、に電圧応答を示します。 4.9前に定量化されるように、温暖化は暗闇の中で光受容体の静止電位を低下させ、その電圧応答を加速します。
フルーツフライR1-R6感光体は、光強度に向上しました 図8. シグナリングパフォーマンス (A)感光体の出力(下)暗くし、明るい(上記; 10,000倍明るい光)。同じ微小電極によって記録された自然光強度の時系列を繰り返します20 O℃で同一セル内彼らはより多くのサンプル、単一光子4,5,7,8に基本応答(バンプ)を統合するので、明るい刺激に対する応答は、大きくなっています。 (B)20の連続した1秒の長電圧応答が重畳されています。適応傾向は(Aの矢印)(Aの破線ボックス)後退した後、個々の応答(ライトグレー)を採取しました。対応する応答手段(信号)が暗くトレースです。信号と個々の応答との間の差は、ノイズです。 (C)細胞を、標準的な方法4,5,7,8を用いて信号対雑音比(SNR)」シグナリング性能を記録することによって定量化しました」。感光体の出力がsで、 '(20ヘルツまでの薄暗い ≥1、薄暗いSNR)よりも(84ヘルツまでの明るい ≥1、明るい刺激SNR)'での信頼性のシグナル伝達の約64 Hzの広い範囲を持っていますignal対雑音比が大幅に向上します。 SNR 薄暗い MAX = 87からのSNR ブライト MAX = 1868へ。 この図の拡大版をご覧になるにはこちらをクリックしてください。
反復刺激によって適応と神経エンコーディングを学びます
網膜およびラミナ構造で比較的少ない損傷を引き起こす方法の非侵襲性は、in vivoでの彼らの近くに自然の生理的状態の異なる光刺激に対する個々の細胞の信号伝達性 能を研究するために理想的です。8に示すR1-の電圧応答を図 20°Cので暗く、明るい繰り返さ自然光強度の時系列刺激に対するR6の感光体、 図9のに対し、 25 O℃で異なる自然刺激に別のR1-R6の感光体とLMCの応答を示します同じフライで2鋭い微小電極、網膜内の1とラミナ内の他の同時細胞内記録は、30生存可能であるには余りにも困難であるため、前とシナプス後録音は、二つの異なるハエとは別に行われました。
別のハエとは異なる微小電極によって記録された25℃。(A)R1-R6(灰色)およびLMC(黒)出力で繰り返さ自然主義的刺激へのミバエR1-R6感光体とLMCの 図9 の電圧応答 。 (B)光に示す完全に明順応連続20前(上)と個々の応答と同じ自然な刺激パターンにシナプス後(下)の応答を、灰色暗いトレースとしてDに対応する応答手段(信号)。信号と個々の応答との間の差は、ノイズです。 (C)細胞信号対雑音比(SNR)」シグナリング性能を記録することによって定量化しました」。 LMC出力は'(R≥1、94ヘルツまでのR1-R6の出力SNR)よりも(104ヘルツまでLMC≥1、信頼性の高いシグナリングSNR)」の約10 Hzの広い範囲を持っています。両方の信号対雑音比が高い(SNR LMC MAX = 142、SNR R MAX = 752)、記録ノイズが低かったとして、その違いは、細胞間の実際のエンコーディングの違いを反映している。 の拡大版をご覧になるにはこちらをクリックしてください。この図。
刺激開始後、録音典型的なLY大部分は5-6秒以内に治まる高速適応傾向を示します。その時から、細胞が(各点線のボックスは、これらの20を囲む)各1秒長い刺激提示に非常に一貫性のある応答を生成します。これらは( 図8Bおよび図9B)重畳されたときの応答の再現性が明白になります。個々の応答は、薄い灰色の痕跡であり、その厚い暗いトレースを意味します。 神経雑音は、平均、各個々の応答4,5,9,37,38との差であるのに対し、平均応答は、 神経信号として取り出されます。周波数領域でそれぞれの信号対雑音比( 図8C及び図9C)は 、パワースペクトルに信号とノイズデータチャンクをフーリエ変換し、対応する平均雑音パワースペクトル4との平均信号パワースペクトルを分割することにより得られました5,9,37,38。特徴的に、最大の信号対雑音比O自然な刺激に記録された神経の出力は(100 -千)高いF(。 例えば 、 図8C)、および非常に低い記録ノイズで最も安定した製剤中の値>>千に達することができます。通知はまた、温暖化は'( ブライト ≥1セル信頼性のシグナル4 SNR)の帯域幅」を展開します。例えば、 図8 及び図9中の2つのR1-R6sとの間の相対的な差は、それぞれ、10ヘルツ(84、20 O Cと94ヘルツ25 O Cで)です。
一つは、さらに、シャノンの式32を使用することによって、または三重外挿法39を介して応答'エントロピー及び雑音エントロピーレートの差を計算することにより、その信号対雑音比の情報転送の各セルの速度を推定することができます。情報理論解析、およびそれらの使用および制限に関する詳細具体的には、この方法では、Sは、以前の刊行物7,8,39に示されています。
19℃。(A)R1-R6(灰色)およびLMC同じフライから同じ微小電極によって記録(黒)出力で繰り返さ自然主義的刺激へのキラーフライR1-R6感光体とLMCの 図10 の電圧応答 。電極が目に進めたとして、後シナプス前最初のシナプス後部と、。同じ自然な刺激パターンに(B)20の連続した前(上)とシナプス後(下)の応答(ライトグレーのトレース)は、最初の適応(Aの点線のボックス)の後に捕獲されました。個々の応答に、それぞれの違いは、ノイズを与えながら、その手段は、信号(上部の暗いトレース)です。 (C)に対応するシグナリットル対ノイズ比(SNR)は 、図8C及び図9Cのように計算しました。 LMC出力が'(134ヘルツまでのR MAX≥1、SNR)R1-R6の出力よりも(234ヘルツまでのLMC MAX≥1、信頼性の高いシグナリングSNR)」の100 Hzの広い範囲について持っています。両方の信号対雑音比は、(SNR LMC MAX = 137、SNR R MAX = 627)高く、同じ微小電極がレコーディングに使用されたとして、その違いは、前と後シナプス神経出力の本当の違いを反映しています。これらの結果は、記録システムは、低ノイズを持っていた、と分析への影響が限界であったことを示唆している。 この図の拡大版をご覧になるにはこちらをクリックしてください。
Neuroethologicalビジョン研究
この方法はまた、視覚情報の処理の比較neuroethological研究を可能にする、異なる昆虫種の化合物の眼7,8,35,36( 図10)から前およびシナプス後電位の応答を記録するために使用することができます。提示記録システムの場合、唯一の必要な適応を検討した種のための適切なサイズの開口部を有する新規作成ホルダー、それぞれです。これらの例示的な録音は女性キラーフライ(Coenosiaのattenuata)のからのものです。彼らは、 図9のショウジョウバエの対応のために使用されるように、同一の繰り返し光刺激に対するR1-R6の感光体とLMCの細胞内の電圧応答を示すが、19℃。でこの場合、前およびシナプス後データの両方を同じ場から記録しました。 1第1の横の薄層を進行(3 M KClで満たされた)同じ記録電極と、他の前に入力した後、正面網膜る。でも、クーラーの温度で- - 25°Cの 、Coenosiaデータでのショウジョウバエのデータと比較してより高速なダイナミクスと応答を示しています。広い周波数範囲にわたって信頼できるシグナリング(信号対雑音比>> 1)の範囲を拡大します。自然刺激の神経符号化におけるこのような機能的適応は高速空中狩猟行動を達成するために高精度な時空間情報を必要とCoenosiaの捕食ライフスタイル36、と一致しています。
We have presented the basic key steps of how to use sharp conventional microelectrodes to record intracellular responses of R1-R6 photoreceptors and LMCs in intact fly eyes. This method has been optimized, together with bespoke hardware and software tools, over the last 18 years to provide high-quality long-lasting recordings to answer a wide range of experimental questions. By investing time and resources to construct robust and precise experimental set-ups, and to produce microelectrodes with favorable electrical properties, high-quality recordings can become the norm in any laboratory working on Drosophila visual neurophysiology. Whilst well-designed recording and light stimulation systems are important for swift execution of different experimental paradigms, there are three procedural steps that are even more critical to achieving successful recordings: (i) to make the fly preparation with minimal eye damage, (ii) to pull microelectrodes with the right electrical properties, and (iii) to drive the recording electrode into the eye without breaking its tip. Ultimately, to record meaningful data, the investigator has to understand the physical basis of electrophysiology and how to fabricate suitable microelectrodes for the targeted cell-types.
Therefore, the limitations of this technique are primarily set by the patience, experience and technical ability of the investigator. Because this technique can take a long time to master for small Drosophila cells, it is advisable for trainee electrophysiologists to first practice with larger insect eyes, such as the blowfly36 or locust35, using the same rig. Once performing high-quality intracellular recordings from the larger photoreceptors and interneurons becomes routine, it is time to move on to the Drosophila eye. Another limitation of the technique concerns cellular identification. Penetrated Drosophila cells can be loaded electrophoretically with dyes, including Lucifer yellow or neurobiotin. However, because of the small tip size of the microelectrodes, electrophoresis works less efficiently than with lower resistance electrodes, such as patch-electrodes. Furthermore, the dye-filled microelectrodes characteristically have less favorable electrical properties, making it much harder to record high-quality responses with them from Drosophila photoreceptors and LMCs.
A technical problem that occurs sometimes is unstable input signal, or a complete lack of it. This is often associated with the voltage signal being either constantly drifting or higher/lower than the amplifier's recording range. On most occasions, this behavior is caused by the recording electrode being blocked (or its tip being too fine - having too high a resistance or intramural capacitance - to properly conduct fast signal changes). Although one can try to unblock the tip by buzzing the electrode capacitance, which sometimes works, often the situation is best resolved by simply changing the recording electrode. This may further require parameter adjustments in the microelectrode puller instrument to lower the tip resistance of the new electrodes. The electrode tip can also become blocked in preparations, for which it took too much time to cover the corneal hole by petroleum jelly. Prolonged air-contact can dry up the freshly exposed retinal tissue, turning its surface layer into a glue-like substance. If this is the case, the investigator typically sees a red blob of tissue stuck on the recording electrode when pulling it out of the eye. The only solution here is to make a new preparation. Petroleum jelly may provide many benefits for electrophysiological recordings: (i) it prevents the coagulation of the hemolymph that could break the electrode tip; (ii) it coats the electrode tip reducing its intramural capacitance, which lowers the electrode's time constant, and thus has the potential to improve the temporal resolution of the recorded neural signals40,41; (iii) it keeps the electrode tip clean, facilitating penetrations; and after penetration, (iv) it may even help to seal the electrode tip to the cell membrane42.
The signal can further be unstable or lost when the silver-chloride wire of the electrode-holder is broken or dechloridized; in which case just replace or rechloridize the old wire. The missing signal can also result from one (or both) of the electrode-holders not being securely connected to their jacks. However, it is extremely unusual that a piece of equipment would be malfunctioning. If signal is undetectable and all other possibilities have been exhausted, test that each part of the recording apparatus, including the headstage, amplifier, low-pass filters and AD/DA-converters, are connected properly and functioning normally. One way to achieve this is to replace each instrument with another from a rig that is known to operate normally. Alternatively, use a signal generator to check the performance of the electronic components one by one.
But perhaps the most common technical problem facing the electrophysiologist is that of recording noise. Broadly, recording noise is the observed electrical activity other than the direct neuronal response to a given stimulus. Because the fly preparation, when properly done, is very stable, the observed noise (beyond the natural variably of the responses) most often results from ground-loops in the recording equipment, or is picked up from nearby electrical devices. Such noise is typically 50/60 Hz mains hum and its harmonics; but sometimes composed of more complex waveforms. To work out the origin of the noise, remove the fly preparation holder from the set-up, connect the recording and reference electrodes through a drop of fly Ringer (or place them in a small Ringer's solution bath; see step 1.2.6) and record the signal in CC- or bridge-mode. If noise is observable on the recorded signal, this likely means that the noise is external to the fly preparation.
Another good test for identifying the origin of noise is to replace the electrode-holders with an electric cell model connected to the amplifier. In an ideally configured and grounded set-up, the recorded signal should now be practically noise-free, showing only stochastic bit-noise from the AD-converter (in the best case not even that!). If noise is still present, then recheck that all rig equipment is properly grounded. A convenient approach to detect ground-loops is to: (i) disconnect all the grounding wires from all the parts within the rig; (ii) ensure that, after doing this, every single part is actually isolated from ground, by means of an ohm-meter; (iii) connect the parts, one by one, to the central ground directly, not through any other part of the rig. Try also changing the equipment configurations. For example, sometimes moving the computer and monitor further away from the rig can reduce noise; yet at other times, moving the computer inside the equipment rack reduces noise. It is also worth unplugging nearby equipment to see if noise is reduced, or shield additional components. Furthermore, try unplugging or replacing different components of the recording equipment, especially BNC cables (which can have faulty ground connections). If only bit-noise is observed when using the cell model, the initial noise source is either the electrodes or the fly preparation itself. For example, it could be that the reference electrode is inadvertently touching a motor nerve or active muscle fibers inside the head capsule (or disturbing flight muscles in the thorax - if placed there). It is usually simplest to prepare a new fly for recording, taking care to minimize damage to the fly. But if the noise persists and is broadband, it is likely that the electrodes are suboptimal for the experiments; too sharp/fine (hence too noisy) or just wrong for the purpose; we have even seen quartz-electrodes acting as antennas - picking up faint broadcasting signals! Although iteration of the puller-instrument parameter settings to generate the just right microelectrodes for consistent high-quality recordings from specific cell-types can take a lot of effort, it is worth it. Once the recording electrodes are well-tailored for the experiments, they can provide long-lasting recordings of outstanding quality.
Sharp microelectrode recording techniques can be similarly applied to study neural information processing in multitude of preparations, including different processing layers in the insect eyes and brain43,44. Because the microelectrode tips can be made very fine, these typically damage the studied cells less than most patch-clamp applications. Importantly, the modern sample-and-hold microelectrode amplifiers enable good control of the tips' electrical properties40,45-47. Thus, when correctly applied, this technique can provide reliable data from both in vivo3,5,7-10,44 or in vitro48 preparations with high signal-to-noise ratio at sub-millisecond resolution. Such precision would be impossible with today's optical imaging techniques, which are noisier and slower. Moreover, the method can be used to characterize small cells' electrical membrane properties both in current- and voltage-clamp configurations5,29,33,36,40-42,49, providing valuable data for biophysical and empirical modeling approaches7,8,11,33,49-54 that link experiments to theory.
The authors have nothing to disclose
The authors thank Mick Swann, Chris Askham and Martin Gautrey for their important contributions in designing and building many electrical and mechanical components of the rigs. MJ's current research is supported by the Biotechnology and Biological Sciences Research Council (BBSRC Grant: BB/M009564/1), the State Key Laboratory of Cognitive Neuroscience and Learning open research fund (China), High-End Foreign Expert Grant (China), Jane and Aatos Erkko Foundation Fellowship (Finland), and the Leverhulme Trust grant (RPG-2012-567).
Name | Company | Catalog Number | Comments |
Stereo Zoom Microscope for making the fly preparation | Olympus | SZX12 DFPLFL1.6x PF eyepieces: WHN30x-H/22 | Capable of ~150X magnification with long working distance; bespoke heavy steel table mount stand |
Stereomicroscope in the intracellular set-up | · Olympus | Olympus SZX7; eyepieces: WHN30x-H/22 | 30X eyepieces are needed for seeing the electrode tip reflections well when driving it through the small corneal hole into the eye |
Nikon microscope | Nikon SMZ645; eyepieces: C-W30x/7 | ||
Anti-vibration Table | Melles Griot | With metric M6 holes on the breadboard | Our bespoke rigs have a large hole drilled through the thick breadboard that lets in the fly preparation platform pole (houses a copper heatsink with electronics) from below |
Newport | |||
Micromanipulators | Narishige | Narishige NMN-21 | In our intracellular set-ups, different micromanipulator systems are used for driving the shap recording electrodes into the fly eye. All the listed manipulators are succesfully providing long-lasting stable recordings from Drosophila photoreceptors and LMCs. |
Huxley Bertram | Huxley xyz-axis with fine manual control | ||
Sensapex | Sensapex triple axis | ||
Märzhäuser | Märzhäuser DC-3K with additional x-axis piezo stepper and MS 314 controller | ||
Magnetic Stands | Any magnetic base with on/off switch will do | For example, to manage cables inside the Faraday cage | |
Electrode Holders | Harvard Apparatus | ESP/W-F10N | |
Silver Wire | World Precision Instruments | AGW1510 | 0.3 - 0.5 mm diameter; needs to be chloridized for the electrode holders |
Fiber Optic Light Source | Many different, including Olympus | ||
Fiber Optic Bundles | UltraFine Technology | To deliver the LED light stimulus to the Cardan arm system. We use both liquid and quartz light guides (range from UV to IR) | |
Thorn Labs | |||
Fly Cathing Tube | P80-50P 50ml Cent. Tube PP., Pack of 100 Pcs | Cut the conical bottom off from 50 ml Plastic Centrifuge Tube and glue a 1 ml pipette tip on it. | |
Digital Acquisition System | National Instruments | ||
Single-electrode current/voltage-clamp microelectrode amplifier | npi SEC-10LX | http://www.npielectronic.de/products/amplifiers/sec-single-electrode-clamp/sec-10lx.html | Outstanding performer! |
Head-stage | Standard (+/- 150 nA) | For npi SEC-10LX | |
LED light sources and drivers | 2-channel OptoLED (Cairn Research Ltd., UK) | Many of our stimulus systems are in-house built | |
Self-designed and constructed | |||
Acquisition and Analyses Software | Many companies to choose from | Biosyst; custom written Matlab-based system for experimental and theoretical work in the Juusola laboratory | |
Personal Computer or Mac | Ensure that PC or Mac is compatible with data acquisition system and software | ||
Cardan arm system | Self-designed and constructed | Providing accurate x,y,z-positioning of the light stimuli | |
Peltier temperature control system | Self-designed and constructed | ||
Faraday Cage | Self-constructed | Electromagnetic noise shielding | |
Filamented Borosilicate Glass Capillaries | Outer diameter: 1 mm | ||
Inner diameter: 0.5 - 0.7 mm | |||
Filamented Quartz Glass Capillaries | Outer diameter: 1 mm | ||
Inner diameter: 0.5 - 0.7 mm | |||
Pipette Puller | Sutter Instrument Company | Model P-2000 laser Flaming/Brown Micropipette Puller | For borosilicate reference electrodes, use the preset program #11 (patch electrodes): Heat = 350; Filament = 4; Velocity 36; Delay = 200).1.2.1). For borosilicate recording electrodes, use the preset program #12 (this typically pulls good conventional sharps for photoreceptor recordings): Heat = 355; Filament = 4; Velocity 50; Delay = 225; Pull = 150. For LMC recordings, which require electrodes with finer tips, these values need to be adjusted. For pulling quartz capillaries, P-2000 manual suggests programs for fine tipped microelectrodes. These programs’ preset parameters serve as useful starting points for systematic modifications to generate electrodes with good penetration success and low recording noise. |
Extracellular Ringer Solution for the reference electrode | Chemicals from Fisher Scientific | 10326390, NaCl 10010310, KCl 10147753, TES 10161800, CaCl2 10159872, MgCl2 10000430, sucrose | See the recipe in the protocol section |
3 M KCl solution for filling the filamented recording microelectrode | Salts from Fisher Scientific | 10010310, KCl | |
Petroleum jelly | Vaselin | ||
Non-stainless steel razor blades | |||
Blade holder/breaker | Fine Science Tools By Dumont | 10053-09 | 9 cm |
Blu-tack | Bostik | Alternatively, use molding clay | |
Forceps | Fine Science Tools By Dumont | 11252-00 | #5SF (super-fine tips) |
このJoVE論文のテキスト又は図を再利用するための許可を申請します
許可を申請This article has been published
Video Coming Soon
Copyright © 2023 MyJoVE Corporation. All rights reserved