JoVE Logo

サインイン

このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。

この記事について

  • 要約
  • 要約
  • 概要
  • プロトコル
  • 結果
  • ディスカッション
  • 開示事項
  • 謝辞
  • 資料
  • 参考文献
  • 転載および許可

要約

ここで提示する方法は、新生児子豚モデルにおける腕神経叢に対して生体内生体力学試験を行う方法である。

要約

新生児腕神経叢麻痺(NBPP)は、頸部および肩領域に位置する神経複合体における出産過程で起こるストレッチ傷害であり、総称して腕神経叢(BP)と呼ばれる。最近の産科医療の進歩にもかかわらず、NBPPの問題は、1,000人の出生につき1.5例の発生率を有する世界的な健康負担であり続けています。この傷害のより重篤なタイプは、肩から下に腕の永久的な麻痺を引き起こす可能性があります。NBPPの予防および治療は、ストレッチを受けた場合の新生児BP神経の生体力学的および生理学的応答の理解を保証する。新生児BPの現在の知識は、生体内の新生児BP組織の代わりに成人動物または死体BP組織から外挿される。本研究では、生体内の機械的試験装置と、新生児子豚における生体内バイオメカニカル試験を行う手順について説明する。装置は、クランプ、アクチュエータ、ロードセル、および故障まで生体内の株と負荷を適用し、監視するカメラシステムで構成されています。カメラシステムはまた破裂の間に故障の場所の監視を可能にする。全体的に、提示された方法は、ストレッチを受けたときに新生児BPの詳細な生体力学的特性評価を可能にする。

概要

最近の産科の進歩にもかかわらず、BP複合体に対するストレッチ傷害によるNBPPの問題は、1,000人の出生1,2当たり1.5例の発生率を有する世界的な健康負担であり続けている。関連する危険因子は、母親(すなわち、過度の体重、母親の糖尿病、子宮異常、BP麻痺の歴史)、胎児(すなわち、胎児マクロソミア)、または出生関連(すなわち、肩ジストシア、長期労働、鉗子または真空抽出器による補助出産、ブリーチプレゼンテーション3)であり得る。これらの合併症は、特定の状況では避けられないが、NBPPの予防および治療は、ストレッチを受けたときに新生児BPの生体力学的および生理学的応答の理解を保証する。

BPに関する報告された生体力学的研究は、成体動物およびヒト死体組織を使用しており、有意な不一致を示す4、5、6、7、8、9、10、11、12、13、14、15。複雑なBP組織の生体力学的性質の臨床的関連性は、新生児動物モデルならびに生体内生体力学試験アプローチを保証する。さらに、複雑な実世界の配信シナリオにおけるBPストレッチ傷害の研究に関する制限は、様々な送達合併症および技術の影響の調査を可能にする方法を提供するコンピュータモデルへの依存を高める。これらのモデルの臨床的関連性の鍵は、その生体性(人間のような応答)である。Gonik et al.16およびGrimmら17によって利用可能な計算モデルは、ウサギおよびラット神経組織に依存するが、新生児BP組織には依存しない。臨床的に関連する新生児動物モデルで生体内バイオメカニカル検査を行うことは、利用できない新生児BPデータの重大なギャップを埋めることができる。

現在の研究では、生体内の機械的検査装置と3-5日齢の男性ヨークシャー新生児子豚で生体力学的検査を行う手順について説明しています。このデバイスは、クランプ、アクチュエータ、ロードセル、および故障時に生体内の歪みと負荷を適用および監視するカメラシステムで構成されています。カメラシステムはまた破裂の間に故障の場所の監視を可能にする。全体的に、システムは伸張を受けたときに新生児BPの詳細な生体力学的特徴付けを可能にし、それによって生体内の機械的故障のためのBPの閾値株およびストレスを提供する。得られたデータは、NBPPに関連する配信シナリオにおけるBPストレッチに対する内因性および内因性力の影響を調査するように設計された既存の計算モデルの人間のような行動(生物忠実性)をさらに改善することができる。

プロトコル

ドレクセル大学の制度的動物ケアと使用委員会は、すべての手順を承認しました (#20704).

1. 動物の到着と順応

  1. 到着後少なくとも24時間は1~2日前の子豚を検疫してください。
  2. アスペンチップの寝具に清潔で衛生的なステンレススチールケージ(x 48 x 36 in x 36 in)の家の子豚をアスペンチップ寝具に乗せ、豚のミルク交換器でアドリビタムを供給します。
  3. 室温を85°Fに保ち、熱中性環境を確保します。

2. 実験の日

  1. 実験の前にフィード2時間を取り外します。
  2. ケタミン(10~40mg/kg)/キシラジン(1.5~3.0 mg/kg IM)の筋肉内注射で子豚を注射し、搬送ケージを介して手術スペースに輸送します。

3. 麻酔の誘導と維持

  1. 鼻コーンによって酸素に混合された4%のイソフルラン吸入麻酔薬を投与し、パルペブラルおよび離脱反射の不在を評価することによって動物が深く麻酔されていることを確認する。
  2. 動物をすびれ位置に置いて挿管し、喉頭鏡(ストレートブレード)を使用して挿管管(直径2.5~2mm)を気管に導きます。
  3. 挿管管が確保されたら、動物を人工呼吸器の上に置きます。
  4. 子豚がイソフルラン(0.25%-3%メンテナンス)、酸素、亜酸化窒素の混合物を受け取ることを確認してください。
  5. フェンタニル(10μg/kg)の用量を提供し、鎮痛および沈下の十分な深さを継続し、気管内チューブの崩壊を危険にさらす可能性のある運動アーティファクトを避けるために、1〜2時間ごとに用量を与え続けます。
  6. 皮下腹部静脈または他の末梢静脈における静脈内(IV)アクセスを確立する。
  7. 大腿動脈を通して動脈ラインを確立する。これは、非侵襲的に、またはカットダウンを行うことによって行うことができます。

4. モニタリングとケア

  1. つま先ピンチに対するカンタル反射の欠如と離脱応答の欠如を確認することにより、麻酔の深さを監視します。
  2. 動脈血圧、心電図検査(ECG)、終潮時CO2、パルスオキシメトリー、体温など、麻酔中および実験全体を通じて生理学的パラメータの連続的なモニタリングを行います。
  3. 血液ガスと血糖値を0.5~1時間ごとにモニタリングし、必要に応じて~100cc/kg/日で1時間より長く麻酔された動物に静脈内液(50%デキストロース、50%正常生理食性)を与え、密血を確実にします。
  4. 動物の麻酔面を注意深く頻繁に監視します。鎮痛を提供し、吸入麻酔を増加させます。
  5. ノルモキシアを確保するために必要に応じて人工呼吸器パラメータと薬物投与量を制御することにより、通常の酸素張力で動物を維持し、その後、通常の体温が39°Cに維持されるように、温度調節された循環水毛布の上に動物を置きます実験の間のために。

5. 腕神経叢外科

  1. セクション3で説明されているように適切な麻酔の後、手術台の上に動物を配置し、上肢を誘拐し、腋窩領域を露出させる。
  2. 動物をカバーするために任意の外科的なドレープを使用してください。清潔だが無菌の技術を使用してください。
  3. 気管の上に上にある皮膚と筋膜の上に中線切開(#10ブレードを使用)を行い、胸骨の上3分の1まで、C3-T3間の脊椎レベルに対応して、脊椎の両側の腕神経叢複合体を露出させる。
  4. 鎖骨の縁に沿った上側の鉗子と止血を水平に使用して切開部を外挿し、頭蓋静脈とバジル静脈を分離する。
  5. はさみと鉗子を使用して鈍い解剖によって上側および下側のフラップを解放し、それぞれ腕神経叢の頸部および胸部領域へのアクセスを可能にする。
  6. T1で軸(C2)と最初のリブを識別します。これらのランドマークを使用して、下3頸部(C6-C8)と最初の胸部(T1)脊椎骨孔を特定し、その後、神経叢を注意深く調べて、露出を達成するために分裂(M形状)の分岐を見つけます。
  7. ラベル(神経ループを使用して)これらの分岐の上の腕神経叢領域は、脊椎に根/幹として近く、これらの分岐の下にあるものにコード、腕に近い神経の後にラベルを付けます。

6. 生体力学試験

  1. 生体機械試験装置のセットアップ
    注:カスタムメイドの機械試験装置は、BPの生体内ストレッチを実行するように設計され、製造されました(図1)。
    1. セットアップのベースをカートに取り付けます。
    2. 大型Cクランプを使用して、電気機械アクチュエータをベースに取り付けます。アクチュエータは150ポンドの力、10"の打撃および15のmm/sの速度を提供することができる。速度は0.2 mm/sに減らすことができ、まだ望ましいように機能する。
    3. 200 N ロードセルをアクチュエータに取り付けます。
    4. パッド入りのプレキシガラスで構成されるロードセルにクランプを取り付ける(ねじ込み)ため、クランプ部位の応力集中を防ぎます。
    5. 三脚にカメラを取り付けます。カメラの解像度が 658 x 4926 ピクセルで最大 120 f/s を記録できることを確認します。
    6. カメラ、アクチュエータ、ロードセルからUSBケーブルをコンピュータに接続して、セットアップのすべてのコンポーネントを統合して同期します。
    7. コンピュータ、アクチュエータ、ロードセルを電源に差し込みます。
  2. 適用された荷重を記録する前に、ロード セルをキャリブレーションします。これを行うには、次の手順を実行します。
    1. 調整可能なハンドルを使用してアクチュエータを90°の角度に設定し、分度器で角度を確認します。
    2. ロード セルで動作するソフトウェアを開きます (材料表)。[スタート]ボタンを押して、電圧のライブ読み出しを表示します。
    3. クランプのウェイトを 0 ~ 1,000 g の範囲でセットアップから 100 g ずつハングアップし、測定された電圧を記録します。
    4. 傾き(m)と切片(b)を求めることによって、電圧と重みの線形方程式を計算します。これは、スプレッドシート プログラムと付属の勾配関数を使用して、以下の1 から b を計算するために行われます。次に示す方程式 2 を機械セットアップ コードに挿入します。
      方程式 1: b = y - mx
      ここで、y は重みで、x は電圧、m は傾き、b は切片 (定数) です。
      方程式 2: y = mx + b
      ここで、y は重みで、x は電圧、m は傾き、b は定数です。
  3. テスト:BP神経は切断され、カスタム構築されたクランプによってテストセットアップに固定される。
    1. 細かいはさみを使ってBP神経を切ります。
    2. 図 1に示すように、カスタム構築されたクランプで BP 神経の切断側をクランプします。
    3. クランプされたBPセグメントに黒いアクリル塗料またはインドインクを手動で置きます(図2)。
    4. 1 cmの定規であるキャリブレーショングリッドを動物内に平らに配置して、データ分析の尺度を設定します。
    5. カメラのソフトウェアを使用して、テストされたセグメント上でカメラの配置を直接表示し、マーカーの動き/変位を監視し、任意の時点で実際の組織歪みを決定できるようにします。
    6. 神経がテーブルから体内に挿入する高さやテーブルからのクランプの高さ、アクチュエータの角度、組織の全長などの初期測定値を記録します。
    7. プログラミング ソフトウェア (図 3に示すように、グラフィカル ユーザー インターフェイス [GUI] を含むテーブル) を開きます。
    8. [実行] ボタンを押して GUI を実行します。
    9. [初期化] ボタンを押してシステムを初期化します。
    10. タレボタンを押してシステムを引き上します。
    11. テスト開始ボタンを押してBPセグメントをストレッチします。これはBPの任意の区分で完全な失敗が起こるまで500のmm/minの割り当てられた速度でティッシュを引っ張る。このストレッチレートは、利用可能な文献4、8、18に基づいて選択されます。プログラムはまた、ビデオファイル、適用された引張荷重、組織の変位、および試験の持続時間を保存します。
    12. 組織が破裂する点である障害部位を記録する。
  4. 安楽死: ペントバルビタールの致死量 (120 mg/kg i.v.) 実験の終わりに子豚を安楽死させる.
  5. データ分析:テスト中に取得したビデオの分析にモーショントラッキングソフトウェアを使用します。
    1. [ファイル] メニューの [モーション トラッキング ソフトウェア] 内の実験からビデオ ファイルを開きます。ビデオ ファイルを開きます
    2. キャリブレーション グリッドを使用して、ライン ツールを使用してモーション トラッキング ソフトウェアでスケールを設定し、描画後に線を右クリックし、[測定値の調整] を選択して、既知の値をセンチメートル単位で入力します (図 4)。
    3. 動画を右クリックして[トラックパス]を選択し、マーカーの中心を組織のマーカーに合わせ、破裂するまで取り付けることで、モーショントラッキングソフトウェア内の組織のマーカーを追跡します。
    4. マーカーから X 座標と Y 座標を書き出す には、[ファイルをスプレッドシートにエクスポート]を選択して、ひずみの計算に使用できるようにします。
    5. データをプログラミング ソフトウェアにインポートして、時間の経過に従って X 座標と y 座標の間の距離を計算し、ひずみを計算します。
    6. ストレッチ中の傾斜の変化を考慮した後、距離の変化を元の距離で割ることによって、各時点でひずみ値を計算します。実際のひずみ値は、各時点で隣接するマーカーの各ペア間で決定されます。これらの株の平均も計算されます。

結果

BP神経叢の4つのセグメント(4つのマーカー間)からの代表的な負荷時間プロットとひずみがそれぞれ図5および図6に示されている。得られた8.3 Nの故障負荷は、35%の平均故障株で、ストレッチを受けたときに新生児BPの生体力学的応答を報告する。神経の一部の領域は、神経の長さに沿って不均一な傷害を示す他のものよりも?...

ディスカッション

BP組織上のストレッチの生体力学応答に関する利用可能な文献は、広範囲の閾値ならびに方法論的不一致を示す4、6、8、18、19、20、21、22、23である。公表された結果?...

開示事項

著者たちは何も開示する必要はない。

謝辞

この出版物で報告された研究は、ユーニス・ケネディ・シュリバー国立小児保健・人間開発研究所が受賞番号R15HD093024の下で国立衛生研究所の人間開発と国立科学財団のキャリア賞によって支援されました番号1752513。

資料

NameCompanyCatalog NumberComments
Omega Subminature Tension & Compression Load CellOmegaLCM201-200N200N load cell
Basler acA640-120uc cameraBasleracA640-120uc
Feedback Linear ActuatorProgressive AutomationsPA-14P10" stroke, 150lb force, 15mm/s speed
Motion Tracking SoftwareKinoveaN/AOpen Source
Proramming Software - MATLABMathworksN/Aversion 2018A
Surgical instruments
ForcepsFine Science Tools Inc11006-12 and 11027-12 or 11506-12
HemostatsFine Science Tools Inc13009-12
ScissorsFine Science Tools Inc14094-11 or 14060-09

参考文献

  1. Chauhan, S. P., Blackwell, S. B., Ananth, C. V. Neonatal brachial plexus palsy: Incidence, prevalence, and temporal trends. Seminars in Perinatology. 38 (4), 210-218 (2014).
  2. Foad, S. L., Mehlman, C. T., Ying, J. The epidemiology of neonatal brachial plexus palsy in the United States. Journal of Bone and Joint Surgery - Series A. 90 (60), 1258-1264 (2008).
  3. García Cena, C. E., et al. Skeletal modeling, analysis and simulation of upper limb of human shoulder under brachial plexus injury. Advances in Intelligent Systems and Computing. 252, 195-207 (2014).
  4. Marani, E., van Leeuwen, J. L., Spoor, C. W. The tensile testing machine applied in the study of human nerve rupture: a preliminary study. Clinical Neurology and Neurosurgery. 95, S33-S35 (1993).
  5. Zapałowicz, K., Radek, A. Mechanical properties of the human brachial plexus. Neurologia i Neurochirurgia Polska. 34 (6), 89-93 (2000).
  6. Singh, A., Shaji, S., Delivoria-Papadopoulos, M., Balasubramanian, S. Biomechanical Responses of Neonatal Brachial Plexus to Mechanical Stretch. Journal of Brachial Plexus and Peripheral Nerve Injury. 13 (1), e8-e14 (2018).
  7. Driscoll, P. J., et al. An in vivo study of peripheral nerves in continuity: biomechanical and physiological responses to elongation. Journal of Orthopaedic Research. 20 (2), 370-375 (2002).
  8. Zapalowicz, K., Radek, A. Experimental investigations of traction injury of the brachial plexus. Model and results. Annales Academiae Medicae Stetinensis. 51 (2), 11-14 (2005).
  9. Ma, Z., et al. In vitro and in vivo mechanical properties of human ulnar and median nerves. Journal of Biomedical Materials Research - Part A. 101 (9), 2718-2725 (2013).
  10. Rydevik, B. L., et al. An in vitro mechanical and histological study of acute stretching on rabbit tibial nerve. Journal of Orthopaedic Research. 8 (5), 694-701 (1990).
  11. Kwan, M. K., Wall, E. J., Massie, J., Garfin, S. R. Strain, stress and stretch of peripheral nerve rabbit experiments in vitro and in vivo. Acta Orthopaedica. 63 (3), 267-272 (1992).
  12. Takai, S., et al. In situ strain and stress of nerve conduction blocking in the brachial plexus. Journal of Orthopaedic Research. 20 (6), 1311-1314 (2002).
  13. Zhe, S., Feng, T., Sun, C., Ma, H. Tensile mechanical properties of the brachial plexus of experimental animals. Journal of Clinical Rehabilitative Tissue Engineering Research. 14 (20), 3730-3733 (2010).
  14. Alexander, M. J., Barkmeier-Kraemer, J. M., Geest, J. P. Vande Biomechanical properties of recurrent laryngeal nerve in the piglet. Annals of Biomedical Engineering. 38 (8), 2553-2562 (2010).
  15. Zilic, L., et al. An anatomical study of porcine peripheral nerve and its potential use in nerve tissue engineering. Journal of Anatomy. 227 (3), 302-314 (2015).
  16. Gonik, B., Zhang, N., Grimm, M. J. Prediction of brachial plexus stretching during shoulder dystocia using a computer simulation model. American Journal of Obstetrics and Gynecology. 189 (4), 1168-1172 (2003).
  17. Grimm, M. J., Costello, R. E., Gonik, B. Effect of clinician-applied maneuvers on brachial plexus stretch during a shoulder dystocia event: Investigation using a computer simulation model. Obstetrical and Gynecological Survey. 203 (4), (2011).
  18. Kawai, H., et al. Stretching of the brachial plexus in rabbits. Acta Orthopaedica. 60 (6), 635-638 (1989).
  19. Narakas, A. O. Lesions found when operating traction injuries of the brachial plexus. Clinical Neurology and Neurosurgery. 95, S56-S64 (1993).
  20. Kleinrensink, G. J., et al. Upper limb tension tests as tools in the diagnosis of nerve and plexus lesions - Anatomical and biomechanical aspects. Clinical Biomechanics. 15 (1), 9-14 (2000).
  21. Zapałowicz, K., Radek, A. Mechanical properties of the human brachial plexus. Neurologia, i Neurochirurgia Polska. 34 (6), 89-93 (2000).
  22. Singh, A., Lu, Y., Chen, C., Cavanaugh, J. Mechanical properties of spinal nerve roots subjected to tension at different strain rates. Journal of Biomechanics. 39 (9), 1669-1676 (2006).
  23. Singh, A., Lu, Y., Chen, C., Kallakuri, S., Cavanaugh, J. M. A new model of traumatic axonal injury to determine the effects of strain and displacement rates. Stapp Car Crash Journal. 50, 601-623 (2006).
  24. Gonik, B., et al. The timing of congenital brachial plexus injury: A study of electromyography findings in the newborn piglet. American Journal of Obstetrics and Gynecology. 178 (4), 688-695 (1998).

転載および許可

このJoVE論文のテキスト又は図を再利用するための許可を申請します

許可を申請

さらに記事を探す

154

This article has been published

Video Coming Soon

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved