サインイン

このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。

この記事について

  • 要約
  • 要約
  • 概要
  • プロトコル
  • 結果
  • ディスカッション
  • 開示事項
  • 謝辞
  • 資料
  • 参考文献
  • 転載および許可

要約

インパクトプリントタイプのホットエンボス技術は、インパクトヘッダーを使用して、柔軟な材料にドットパターンをリアルタイムで刻印します。この技術は、異なるポリマーフィルム上の様々な幅と深度を持つドットパターンを作成するために、衝撃ヘッダーのオンオフモーションと位置を制御するための制御システムを備えています。

要約

ここでは、ポリマーフィルムに様々なデザイン、幅、奥行きのあるドットパターンをリアルタイムで作成できるインパクトプリント型ホットエンボス加工に関する研究を紹介します。また、衝撃ヘッダのオンオフモーションと位置を制御システムを実装し、異なるドットパターンを刻み込んだ。ポリエステル(PET)フィルム、ポリメチルメタクリレート(PMMA)フィルム、ポリ塩化ビニル(PVC)フィルムなど、さまざまなポリマーフィルムにドットパターニングを行いました。ドットパターンは共焦点顕微鏡を用いて測定し、ドットパターン化プロセス中に印字型ホットエンボス加工により誤差が少なくて済むのを確認した。その結果、異なるタイプのポリマーフィルムにドットパターンを刻印する際に、プリント式ホットエンボス加工の影響が見られる。また、従来のホットエンボス加工と異なり、このプロセスではエンボススタンプを使用しません。そのため、プロセスは単純であり、大量生産と少量のバッチ生産のためのユニークな利点を提示し、リアルタイムでドットパターンを作成することができます。

概要

研究者は積極的に既存のデバイスやディスプレイを小型化し、これらのデバイスの柔軟性を高めようとしています1,,2.マイクロまたはナノスケールに電気チャネルの幅と深さを減らすためには、高精度技術が必要です。さらに、これらのデバイスの柔軟性を高めるために、電気チャネルのパターンは、ポリマーフィルム33、44などの柔軟な材料上に配置する必要があります。これらの条件を満たすために、超微細マイクロプロセッシング技術の研究が盛んに進められています。

超微細微細加工技術は、鋳造材には鉄やプラスチックなどの高剛性材料だけでなく、ポリマーフィルムなどの軟質材料も含まれるという利点があります。これらの利点により、この技術は、通信、化学、光学、航空宇宙、半導体、センサ5、6、7,など、さまざまな分野でコアプロセスとして広く使用5,されています。超微細微分処理分野では、LIGA(リソグラフィ、電気めっき、および成形)またはマイクロマシニング法が8を用いる。しかしながら、これらの従来の方法はいくつかの問題に関連している。LIGA メソッドは、超微細パターンを作成するためにかなりの時間といくつかのプロセスステップを必要とし、プロセス中に多くの異なるタイプの機器を必要とするため、高いコストも発生します。また、LIGA法では環境を汚染する化学物質を使用しています。

この問題に対処するために、ホットエンボス加工技術は、超微細マイクロプロセス技術の間で注目されています。ホットエンボス加工は、マイクロスケールまたはナノスケールのエンボス成形金型を使用して、加熱されたポリマーフィルムにパターンを作成する技術です。従来のホットエンボス加工技術は、金型の形状に応じて板型とロール・ツー・ロール型に分かれています。2種類の熱いエンボス加工技術は金型の形状の点で異なりますが、この2つのプロセスは、エンボス成形金型がポリマーフィルムを加熱プレートに押し込み、ポリマーフィルムにパターンを刻むという点で似ています。熱いエンボス加工を用いてパターンを刻印するには、ポリマーフィルムをガラス転移温度以上に加熱し、十分な圧力量(〜30〜50 MPa)9を加9える必要がある。また、加熱板の温度、材料、エンボス成形金型の形状などによりパターンの幅や奥行きが変化する。また、パターン化処理後の冷却方法は、ポリマーフィルム上のパターンの形状に影響を与える。

従来のホットエンボス加工では、エンボススタンプやローラーを目的のパターンでエンボス加工することができ、エンボス成形金型を使用して、ポリマーフィルム表面に同じパターンを連続的に印刷することができます。この機能は、大量生産だけでなく、ポリマーフィルム,,10、11、12、13、14,11などの柔らかい材料を持つデバイスを製造するのに適しています。12,1314しかし、従来のホットエンボス加工では、エンボス成形金型に刻まれた単一パターンのみを作成できます。したがって、ユーザーが新しいパターンを作成したり、パターンを修正したりする場合は、インプリンティング パターンを修正するために新しい金型を作成する必要があります。このため、従来のホットエンボス加工は、新しいパターンを作成したり、既存の設計を置き換えたりする場合に、コストと時間がかかります。

以前の研究では、リアルタイム15で様々な幅と深度を持つドットパターンを生成するためのインパクトタイプのホットエンボス加工が導入されました。従来のホットエンボス加工とは異なり、インパクトプリントタイプのホットエンボス法では、インパクトヘッダーを使用してポリマーフィルムにパターンを作成します。この技術は精密位置決めシステムとの目的の位置に衝撃のヘッダーを移動する。制御信号は、目的の幅と深さ、任意の位置でパターンを印刷するために適用されます。衝撃ヘッダの構造は、移動体、ばね、コイル巻き、コア(図1A)15から構成されています。A以前の作業は、分析と実験を通じて、このような衝撃ヘッダがホットエンボス16に対して適切な力を生み出すことができることを確認した。本稿のプロトコルは、インパクトタイプのホットエンボス加工用のハードウェアの設計と、プロセス制御の制御環境をカバーしています。また、PETフィルム、PMMAフィルム、PVCフィルムのドットパターンを分析し、そのすべてが提案されたプロトコルで処理され、インパクトプリント型のホットエンボス加工によって、様々な幅と深さのドットパターンをリアルタイムで作成できることを確認します。これらの実験の結果は、結果のセクションで以下に示され、エンボス加工が超微細パターンを適切に生成できることを確認する。

プロトコル

インパクトプリントタイプホットエンボス加工の製作

  1. モデル 1 を作成し、それを X ステージと組み合わせます (図 1を参照)。
    メモ:Xステージに熱が出ないように、モデル1はアルミニウム製にすることをお勧めします。また、モデル1の設計がヒートプレートの大きさによって変化するため、Z段の軸受板の表面と最も低い高さとの間の距離をモデル1の長さにすることが推奨されます。
  2. XステージとZステージを組み合わせ、Zステージとモデル2を組み立てます。
    注:モデル2は、ヒートプレート(例えば、アルミニウム)からの熱に耐えることができる金属で作られていることを確認してください。モデル2をZステージにしっかりと固定することで、モデル2とインパクトヘッダーの重量を保持するZステージの能力が保証されます。
  3. モデル 2 と衝撃ヘッダーを組み合わせて、ヒート プレートをモデル 1 の下に配置します。
    注: モデル 2 の最も低い位置で衝撃ヘッダーを結合すると、移動子がヒート プレートの表面に到達します。ヒートプレートの表面との衝撃ヘッドの接触を避けるために、Zステージを最大限に上げた後にヒートプレートを取り付けることをお勧めします。適切なソフトウェアを使用してステージを制御します。
  4. フィルムホルダー(補助ファイル1補助ファイル2)のSTLファイルを、3次元(3D)プリンタでフィルムホルダーを印刷するための適切なソフトウェアを使用してGCODEファイルに変換します。
    注:ソフトウェアは、使用する3Dプリンタによって異なる場合があり、一部の環境では、GCODE変換なしで3Dプリンタ環境をサポートしている場合があります。
  5. 3Dプリンタを使用して、フィルムホルダーをGCODEファイルと一緒に印刷します。
    メモ:フィルムホルダなどの大きな部品を印刷する場合、収縮が少なくなるため、フィラメント(Z-HIPSなど)を使用することをお勧めします。
  6. 図1に示すように、2つのフィルムホルダをヒートプレートの端に取り付け、ポリマーフィルムをフィルムホルダーに固定します。熱板上でポリマーフィルムが平坦であることを確認するために、フィルムホルダのモーション1を用いてできるだけポリマーフィルムを引き抜く(図1BBを参照)。ポリマーフィルムを横に移動するには、モーション2を介してフィルムホルダを移動します(図1BBを参照)。
    メモ:フィルムホルダにポリマーフィルムを固定するには、ネジを使用することをお勧めします。接着剤は、フィルムホルダにポリマーフィルムを貼り付けるには不十分であり、そして、パターン化実験後のポリマーフィルムの剥離に最適である。

2. 制御回路の製作

注: このプロセスは、衝撃ヘッダとX-Zステージの制御回路を構築するプロセスを説明します。

  1. 信号を送信する制御装置(材料表を参照)をインパクトヘッダーに接続して、信号を制御します。
  2. 制御装置を衝撃ヘッダーに接続した後、インパクトヘッダに制御信号として-3 Vおよび+10 Vを入力する。
    注: インパクトヘッダーに +10 V 制御信号が送られると(図 1を参照)、移動者(インパクトヘッド)がダウンして、ターンオン状態になります。この状態では、ムーバーはポリマーフィルムに当たって、ポリマーフィルムにパターンを刻印する。
    1. インパクトヘッダーの移動を使用してパターンを刻んだ後、次のパターンを彫刻するために、移動元を上げます。移動先(衝撃ヘッド)を上げるには、-3V制御信号を適用します。
      注:負の電圧は、衝撃ヘッダーの内側の残束によって移動が磁化されるのを防ぐために、衝撃ヘッダーに入力されます。
  3. 制御装置が十分な制御信号を供給できない場合は、出力演算増幅器(OP-AMPなど)を使用して、〜0 V-5 V制御信号を~-3 V-+10Vに増幅して衝撃ヘッダを制御します。
    1. まず、デュアルチャネルDC電源を準備します(資料表を参照)。このステップの後、4つのノードを接続して、チャネル1の正電圧端子(V1+)とグランド(GND)端子、チャンネル2の負電圧端子(V2-)とグランド(GND)を備えた4つのノードをすべてのチャンネルに接続します。全体的な接続図を図2に示します。
      注:2.3.1で説明したステップによると、異なる絶対値を持つ正と負の電圧は、オペアンプ(OP-AMP)に供給することができます。
    2. 電源装置のチャンネル1の負電圧端子(V1-)をOP-AMPの負の電源電圧端子(Vs-)に接続します(図2の青色線で示すように)。続いて、3 V Vcc電圧をチャンネル1に入力します。
      注: ステップ 2.3.1 によると、3 V Vcc 電圧は OP-AMP の負の電源電圧端子(Vs-)に-3 V マイナス電圧として供給されます。
    3. 2の赤線で示すように、電源装置の正電圧端子(V2+)をOP-AMPの正電源電圧端子(Vs+)に接続します。続いて、10 V Vcc電圧をチャンネル2に入力します。
      注: ステップ 2.3.1 によると、10 V Vcc 電圧は OP-AMP の正電源電圧端子(Vs+)に+10 V の正の電圧として供給されます。
    4. 図 2の緑色の線に示すように、OP-AMP の正の入力チャネル (Vin+) に制御装置の +出力チャネル (Vcon+) を接続します。
    5. 図 2の黒い線で示すように、制御装置 (Vcon-) の出力チャネルを電源装置のチャネル 2 のグランド (GND) に接続します。
      注:(Vcon-)をグランド(GND)に接続する場合、チャンネル2のGNDに加えて、ステップ2.3.1の間に接続された端子の1つに接続することができます。
    6. 各ケースで1kΩと10kΩの値の電気抵抗を準備し、図2に示すように、赤い線と黒い線の間でそれらを接続します。
    7. 図2の紫色の線で示すように、1 kΩ と 10 kΩ の間の端子を OP-AMP (Vin-) の負の入力チャネルに接続します。
    8. OP-AMP(Vout)の出力チャンネルと、ステップ2.3.1で説明されている電気端子の1つからラインを引き出します。図 2のオレンジ色の線で示すように、ラインを衝撃ヘッダーに接続します。
    9. 電源に関しては、チャンネル1~3 Vccおよびチャンネル2~10 Vccの電圧を設定します。続いて、制御装置から~0V~5Vの制御信号を生成する。
      注: 生成された V-5 V 制御信号は OP-AMP によって ~-3 V-+10 V に増幅され、ステップ 2.2.1 および 2.2.2 で説明されているように衝撃ヘッダーを制御するために必要です。

3. 実験計画

注: このセクションでは、衝撃型ホットエンボスデバイスを制御し、ドットパターンをポリマーフィルムに刻印するプロセスについて説明します。

  1. ステージ制御プログラム(例えば、Micromove)をインストールして、制御コンピュータ(PC)を使用してXステージとZステージを制御します。
  2. DAQドライバソフトウェアをインストールして、影響ヘッダーを制御する制御PC上の制御デバイスを検出し、操作プログラム(MATLABなど)をインストールして制御デバイスを制御します。
  3. ソフトウェアをインストールした後、図 3Aに示すようにハードウェア環境を構築し、パターン実験を行います。
    1. 図3Aに示すように、Xステージ、Zステージ、インパクトヘッダー、フィルムホルダー、ヒートプレートを取り付け、ハードウェア環境を構築します。
    2. ポリマーフィルムをフィルムホルダに固定し、動き1と2を使用してポリマーフィルムの位置を調整します(図1Bを参照)。フィルムを平らに固定します。
      注:方向2を調整しながらフィルムを平らに保つには、2つのフィルムホルダーの位置を平行にする必要があります。熱板上でフィルムを平らにするには、図1BBに示すように、方向1に応じて位置を下げることでフィルムホルダを調整することをお勧めします。
    3. ポリマーフィルムを固定した後、熱板の温度を調整して、ガラス転移温度以上のフィルムを加熱する。
      注:フィルムの各タイプは、独自のガラス転移温度を持っています。そのため、対応するデータシートでフィルムの材料特性を確認した後、ヒートプレートの温度を独自のガラス転移温度に調整することをお勧めします。
  4. ハードウェアを設定した後、図 3Bに示すように制御回路を組み合わせてステージとインパクトヘッダーを制御します。
    1. 図 3Bに示すように、PC、制御ボード、電源、OP-AMP を準備して、制御環境を構築します。図 2に示すようにデバイスを接続し、コンピュータをコントロール ボードに接続します。
    2. ステップ 2.3.9 で説明されているように、電源装置のチャネル 1 と 2 を通して OP-AMP に 3 Vcc および 10 Vcc 値を入力します。
  5. 制御コンピュータを使用して、ステージとインパクトヘッダーを制御します。
    1. ステージ制御プログラムを使用して X ステージと Z ステージを制御することにより、インパクト・ヘッダーの初期位置を調整します。
      注: 衝撃ヘッダーの初期位置を調整する際は、衝撃ヘッダーとヒートプレートの間に衝突がないことを確認します。Zステージの位置が低すぎると、移動子はヒートプレートと衝突し、移動器とヒートプレートの両方に損傷を与えます。両方のデバイスに損傷がある場合、それはポリマー材料上の微細なパターンの作成を妨げるでしょう。
    2. 操作プログラムを使用して、制御装置から5V制御信号を生成する。ステップ2.3.1~2.3.9によると、OP-AMPは5V制御信号を+10Vに増幅し、衝撃ヘッダをオンにして、ポリマーフィルムにパターンを刻印します。
    3. 操作プログラムを使用して制御装置から0 V制御信号を生成します。ステップ2.3.1~2.3.9に従って、OP-AMPは0V制御信号を-3 Vに増幅し、インパクトヘッダをオフにします。
      注: インパクトヘッダーの移動元が発生し、新しいパターンを刻むのを待ちます。
    4. X ステージを位置に移動して、次のパターンを表示します。
    5. ステップ3.5.1~3.5.4を順次に繰り返して、ポリマー膜にパターン3xを刻印する。
    6. Zステージの10μmを初期位置から下げ、ステップ3.5.5を実行し、Zステージの移動回数を数えます。Zステージの動きが3回を超えた場合は、Xステージを初期位置に移動し、Zステージを移動してインパクトヘッダを最大限に上げます。
      注: Z ステージの高さを変更すると、ドット パターンの深さと幅を調整できます。
  6. ポリマーフィルムをフィルムホルダから取り外し、図4Aに示すように、共焦点顕微鏡(材料表を参照)を使用して各パターンの幅と深さを測定する。
    1. 測定プロセスを開始する前に、顕微鏡の倍率値を選択し、最初に直接観察モードを使用してポリマーフィルムの走査位置を調整します。直接観察によって位置を調整した後、ポリマーフィルムを固定し、スキャンモードをレーザースキャンモードに変更します。
      メモ:コンフォーカル顕微鏡を使用する場合、図4Bに示すように、アクリルパネルを使用してサンプルを固定することをお勧めします。
    2. レーザースキャンモードを使用して、ドットパターンの深さと幅を測定します。
  7. フィルムの種類を変更した後、ステップ 3.3.2 ~ 3.6.2 を繰り返します。
    注:フィルムの各タイプのガラス転移温度を考慮して、ヒートプレートに各フィルムを配置する前にヒートプレートの温度を設定します。本研究では、PVCフィルムのガラス転移温度は100°Cである。PMMAフィルムの場合は95°C、PETフィルムは75°Cです。

結果

インパクトプリント型ホットエンボス加工は、図1に示すように、リアルタイムでポリマーフィルムにドットパターンを刻み込むために使用できるプロセスです。このプロセスは、既存のホットエンボス加工に関連するパターン置換の高コストと長い時間の問題を解決できます。DAQ、OP-AMP、電源を使用して、オンオフ操作時の衝撃ヘッダーの実装により、さまざまなタイ...

ディスカッション

本研究では、印刷型のホットエンボス加工に影響を与え、様々な幅と深さを持つドットパターンを様々なポリマーフィルムにリアルタイムで刻印した。プロトコルステップの中で、2つのステップをすべてのステップの中で重要視する必要があります。1つ目は、ヒートプレートの温度の設定(ステップ3.3.3)で、2つ目は衝撃ヘッダの初期位置の設定(ステップ3.5.1)です。ステップ3.3.3では、ヒート...

開示事項

著者は開示するものは何もない

謝辞

本研究は、韓国貿易省(2010024年、2016年)を通じて「導電性ナノ複合材料を用いた導電層の衝撃プリント型ホットエンボス技術の開発」と題するプロジェクトで支援されています。

資料

NameCompanyCatalog NumberComments
0.3mm High Quality Clear Rigid Packaging PVC Film Roll For Vacuum FormingSunyoSY1023PVC film / Thickness : 300µm
Acryl(PMMA) filmSEJIN TSC200PMMA film / Thickness : 175µm
Confocal Laser Scanning Microscope: 3D-Topography for Materials Analysis and TestingCarl ZeissLSM 7003D confocal microscope / Supporting Mode : 2D, 2.5D, 3D topography
DAQ boardNATIONAL INSTRUMENTSUSB-6211Control board for two stage and impact header / 16 inputs, 16-bit, 250kS/s, Multifunction I/O
DC Power SupplySMARTRDP-305AU3 channel power supply / output voltage : 0~30V, Output current : 0~5A
L511 stagePIL511.20SD00Z-stage / Travel range : 52mm
Large Digital HotplateDAIHAN ScientificHPLP-C-PHeatplate / Max Temp : 350ºC
M531 stagePIM531.2S1X-stage / Travel range : 306mm
Mylar Polyester PET filmsCSHyde48-2F-36PET film / Thickness : 50µm
OPA2541BURR-BROWNOPA2541BMOP-AMP / Output currents : 5A, output voltage : ±40V

参考文献

  1. Lee, S. Y., et al. 2018 Optical Fiber Communications Conference and Exposition (OFC). IEEE. , 1-3 (2019).
  2. Yang, D., Pan, L., Mu, T., Zhou, X., Zheng, F. The fabrication of electrochemical geophone based on FPCB process technology. Journal of Measurements in Engineering. 5 (4), 235-239 (2017).
  3. Fukuda, K., et al. Fully printed high-performance organic thin-film transistors and circuitry on one-micron-thick polymer films. Nature Communications. 5, 4147 (2014).
  4. Sekitani, T., Zschieschang, U., Klauk, H., Someya, T. Flexible organic transistors and circuits with extreme bending stability. Nature Materials. 9 (12), 1015 (2010).
  5. Zamkotsian, F., Dohlen, K., Burgarella, D., Ferrari, M., Buat, V. International Conference on Space Optics-ICSO 2000. International Society for Optics and Photonics. , 105692A (2019).
  6. Zhang, X., Li, Z., Zhang, G. High performance ultra-precision turning of large-aspect-ratio rectangular freeform optics. CIRP Annals. 67 (1), 543-546 (2018).
  7. Ziaie, B., Baldi, A., Lei, M., Gu, Y., Siegel, R. A. Hard and soft micromachining for BioMEMS: review of techniques and examples of applications in microfluidics and drug delivery. Advanced Drug Delivery Reviews. 56 (2), 145-172 (2004).
  8. Mishra, S., Yadava, V. Laser beam micromachining (LBMM)-a review. Optics and Lasers in Engineering. 73, 89-122 (2015).
  9. Yun, D., et al. Development of roll-to-roll hot embossing system with induction heater for micro fabrication. Review of Scientific Instruments. 83 (1), 015108 (2012).
  10. Keränen, K., et al. Roll-to-roll printed and assembled large area LED lighting element. The International Journal of Advanced Manufacturing Technology. 81 (1-4), 529-536 (2015).
  11. Park, J., Lee, J., Park, S., Shin, K. H., Lee, D. Development of hybrid process for double-side flexible printed circuit boards using roll-to-roll gravure printing, via-hole printing, and electroless plating. The International Journal of Advanced Manufacturing Technology. 82 (9-12), 1921-1931 (2016).
  12. Rank, A., Lang, V., Lasagni, A. F. High-Speed Roll-to-Roll Hot Embossing of Micrometer and Sub Micrometer Structures Using Seamless Direct Laser Interference Patterning Treated Sleeves. Advanced Engineering Materials. 19 (11), 1700201 (2017).
  13. Shan, X., Liu, T., Mohaime, M., Salam, B., Liu, Y. Large format cylindrical lens films formed by roll-to-roll ultraviolet embossing and applications as diffusion films. Journal of Micromechanics and Microengineering. 25 (3), 035029 (2015).
  14. Wang, X., Liedert, C., Liedert, R., Papautsky, I. A disposable, roll-to-roll hot-embossed inertial microfluidic device for size-based sorting of microbeads and cells. Lab on a Chip. 16 (10), 1821-1830 (2016).
  15. Yun, D., et al. Impact Print-Type Hot Embossing Process Technology. Advanced Engineering Materials. 20 (9), 1800386 (2018).
  16. Ahn, J., Yun, D. Analyzing Electromagnetic Actuator based on Force Analysis. 2019 IEEE International Conference on Robotics and Automation (ICRA). , (2019).

転載および許可

このJoVE論文のテキスト又は図を再利用するための許可を申請します

許可を申請

さらに記事を探す

158

This article has been published

Video Coming Soon

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved