A subscription to JoVE is required to view this content. Sign in or start your free trial.
Impact print-type hot embossing technology uses an impact header to engrave dot patterns on flexible materials in real time. This technology has a control system for controlling the on-off motion and position of the impact header to create dot patterns with various widths and depths on different polymer films.
Here we present our study on an impact print-type hot embossing process which can create dot patterns with various designs, widths, and depths in real time on polymer film. In addition, we implemented a control system for the on-off motion and position of the impact header to engrave different dot patterns. We performed dot patterning on various polymer films, such as polyester (PET) film, polymethyl methacrylate (PMMA) film, and polyvinyl chloride (PVC) film. The dot patterns were measured using a confocal microscope, and we confirmed that the impact print-type hot embossing process produces fewer errors during the dot patterning process. As a result, the impact print-type hot embossing process is found to be suitable for engraving dot patterns on different types of polymer films. In addition, unlike the conventional hot embossing process, this process does not use an embossing stamp. Therefore, the process is simple and can create dot patterns in real time, presenting unique advantages for mass production and small-quantity batch production.
Researchers are actively attempting to miniaturize existing devices and displays and increase the flexibility of these devices1,2. To reduce the width and depth of electrical channels to the micro or nano scale, high-precision technology is necessary. In addition, to increase the flexibility of these devices, the patterns of the electrical channels must be located on a flexible material, such as a polymer film3,4. To meet these conditions, the study of ultrafine microprocessing technology is actively underway.
Ultrafine microfabrication technology has an advantage in that possible patterning materials include not only highly rigid materials such as iron or plastic but also soft materials such as polymer films. Due to these advantages, this technology is widely used as a core process in various fields, such as communications, chemistry, optics, aerospace, semiconductor, and sensors5,6,7. In the ultrafine microprocessing field, LIGA (lithography, electroplating, and molding) or micromachining methods are used8. However, these conventional methods are associated with several problems. LIGA methods require a considerable amount of time and several process steps to create ultrafine patterns and incur a high cost as well because they need many different types of equipment during the processes. In addition, LIGA methods use chemicals that can pollute the environment.
To address this issue, hot embossing process technology has been spotlighted among ultrafine microprocess technologies. Hot embossing is a technology that creates a pattern on a heated polymer film using a micro- or nanoscale embossing mold. Conventional hot embossing technology is divided into the plate type and roll-to-roll type depending on the shape of the mold. The two types of hot embossing technology are different in terms of the shape of the mold, but these two processes are similar in that the embossing mold presses the polymer film onto a heated plate to engrave a pattern onto the polymer film. To engrave the pattern using the hot embossing process, it is necessary to heat the polymer film above the glass transition temperature and to apply an adequate amount of pressure (~30–50 MPa)9. In addition, the width and depth of the pattern change depending on the temperature of the heated plate, the material, and the shape of the embossing mold. Moreover, the cooling method after the patterning process affects the shape of the pattern on the polymer film.
In the conventional hot embossing process, embossing stamps or rollers can be embossed with the desired pattern, and the embossing mold can be used to print the same pattern onto polymer film surfaces continuously. This feature makes this process suitable not only for mass production but also for fabricating devices with soft materials, such as polymer films10,11,12,13,14. However, the conventional hot embossing method can only create the single pattern engraved in the embossing mold. Therefore, when the user wants to make a new pattern or modify the pattern, they must make a new mold to modify the imprinting pattern. For this reason, conventional hot embossing is costly and time-consuming when creating new patterns or replacing existing designs.
Earlier work introduced the impact-type hot embossing process for producing dot patterns with various widths and depths in real time15. Unlike the conventional hot embossing process, the impact print-type hot embossing method uses an impact header to create patterns on the polymer film. This technology moves the impact header to the desired position with a precision positioning system. A control signal is applied to print patterns at a desired width and depth and at an arbitrary position. The structure of the impact header consists of a mover, a spring, a coil winding, and a core (see Figure 1A)15. Earlier work confirmed through an analysis and experiment that such an impact header can produce the proper force for hot embossing16. The protocol of this paper covers the design of the hardware for the impact-type hot embossing process and the control environment for process control. In addition, we analyze the dot patterns on PET film, PMMA film, and PVC film, all of which are processed with the proposed protocol to verify that the impact print-type hot embossing process can create dot patterns with various widths and depths in real time. The results of these experiments are presented below in the results section, confirming that the embossing process can suitably produce ultrafine patterns.
1. Fabrication of the impact print-type hot embossing process
2. Fabrication of the control circuit
NOTE: This process describes the process of constructing the control circuit of the impact header and the X–Z stage.
3. Experiment design
NOTE: This section describes the processes of controlling the impact-type hot embossing device and engraving dot patterns onto the polymer film.
The impact print-type hot embossing process is a process that can be used to engrave dot patterns onto a polymer film in real time, as shown in Figure 1. This process can resolve the issues of the high cost and long times for pattern replacement associated with the existing hot embossing process. A control circuit was constructed, as shown in Figure 2 (see steps 2.3–2.3.9), using the DAQ, OP-AMP, and power supply to carve patterns on various types of polym...
In this study, we implemented the impact print-type hot embossing process and engraved dot patterns with various widths and depths onto a range of polymer films in real time. Among the protocol steps, two steps should be critically considered among all steps. The first is the setting of the temperature of the heat plate (step 3.3.3), and the second is the setting of the initial position of the impact header (step 3.5.1). In step 3.3.3, if the temperature of the heat plate is too high, it becomes difficult to form a patte...
The authors have nothing to disclose
This research is supported by the project entitled "Development of impact print-type hot embossing technology for a conductive layer using conductive nano-composite materials" through the Ministry of Trade, Industry and Energy (MOTIE) of Korea (N046100024, 2016).
Name | Company | Catalog Number | Comments |
0.3mm High Quality Clear Rigid Packaging PVC Film Roll For Vacuum Forming | Sunyo | SY1023 | PVC film / Thickness : 300µm |
Acryl(PMMA) film | SEJIN TS | C200 | PMMA film / Thickness : 175µm |
Confocal Laser Scanning Microscope: 3D-Topography for Materials Analysis and Testing | Carl Zeiss | LSM 700 | 3D confocal microscope / Supporting Mode : 2D, 2.5D, 3D topography |
DAQ board | NATIONAL INSTRUMENTS | USB-6211 | Control board for two stage and impact header / 16 inputs, 16-bit, 250kS/s, Multifunction I/O |
DC Power Supply | SMART | RDP-305AU | 3 channel power supply / output voltage : 0~30V, Output current : 0~5A |
L511 stage | PI | L511.20SD00 | Z-stage / Travel range : 52mm |
Large Digital Hotplate | DAIHAN Scientific | HPLP-C-P | Heatplate / Max Temp : 350ºC |
M531 stage | PI | M531.2S1 | X-stage / Travel range : 306mm |
Mylar Polyester PET films | CSHyde | 48-2F-36 | PET film / Thickness : 50µm |
OPA2541 | BURR-BROWN | OPA2541BM | OP-AMP / Output currents : 5A, output voltage : ±40V |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved