本プロトコルでは、概念設計要素とグレア視力装置の構造開発の概要を説明する。さらに、正のジフォトプシア(ハロー、スポーク)および2点光閾値を測定するための装置の設計について説明する。
眼内散乱は、その関連する機能的症状を伴い、自動車事故の主な原因であり、隠れ眼疾患および眼外疾患(例えば、角膜およびレンズの疾患)の重要なバイオマーカーである。しかし、光散乱の行動結果を測定するほぼすべての現在の方法は、主に構築物と内容の妥当性の欠如を反映した様々な制限に苦しんでいます:ウィットに、対策は現実世界の状況(例えば、人工光対太陽光)または日常的なタスク(例えば、視覚的に厳しい条件下での認識)を十分に反映していません。
このプロトコルは、散乱形状とグレア条件下での視覚認識を定量化することによって眼内散乱の行動効果を測定する2つの新しい生態学的に有効な方法を記述する。前者は、明るい点源に起因するハローとスポークの直径を評価することによって測定された。光の広がり(基本的には、レイリー基準を用いて決定された点広がり関数)は、広帯域光の2つの小さな点間の最小知覚距離を決定することによって定量化した。後者は、明るい光が輝く開口部を使用して形成された文字の識別に基づいて行われました。
グレアは、眼内散乱から生じる光学的明瞭性の劣化として一般に定義される。この散乱は、画像の表現をレティナに歪め、視覚シーンの混乱した描写を生成します。眩に関連する大事故のほとんどは、太陽1によって引き起こされる昼間の眼内散乱のために起こる。この原点は、時刻と季節(太陽の位置)がドライバー2、3の年齢と同様に重要な変数であることを意味します。安全性の問題としてまぶしさの重要性を考えると、個人とグループの違いをテストするための(主に商業的な)デバイスに焦点を当てたいくつかの方法論学的研究が行われています 4 .多くの場合、これは視力チャートまたはグレーティングを囲む明るい光(通常はハロゲンまたは蛍光)として現れます。個体の特性(例えば、眼の色素沈着、レンズ密度)5に応じて、突き当たる光は、性能を低下させるベール輝度を引き起こす。最初は赤面し、これらのタスクは顔の妥当性が高いようです。図1A,Bに示すように、散乱を増やすことは直接ベールオブジェクトを行い、利用可能なテストはグレア源の強度と個人的特性に起因する分散をキャプチャします。しかし、テストにはいくつかの欠点6があり、散乱の多くの重要な側面は評価されないままにしておきます。最初の、そして最も明白なのは、単に日常生活の中で最も一般的なまぶしさの源が太陽であるということです。
眼内散乱は、年齢と眼色素沈着7によって複合化される波長に複雑な依存性を有する。この自然源から逸脱した程度に、そのような状況での視覚機能を予測する能力は制限される可能性がある。一般的なテストでは、白色発光ダイオード(LED)またはサイドマウントハロゲンを使用します。2,422人のヨーロッパ人ドライバーの初期の研究では、ファン・デン・ベルクらは、眼の中に散乱し、視力が、被験者の視力の質の比較的独立した予測変数であった(散乱と視力は相関しなかった)4を指摘した。しかし、現実の世界では、多くの場合、グレアは表示されているオブジェクトから直接来ます。グレア源は、上(例えば、太陽)または側面(例えば、車のヘッドライト)から来るかもしれないが、ベールの輝度は、視線に直接である。本研究では、昼日の太陽光に近い光源を選択し(図2)、認識(単に検出しない)、タスクと光のストレスが視聴者の直接の視線のどこにあるかに基づいてタスクを設計することで、これらの問題の両方に対処しようとしました。
輝度を覆って視力を低下させる(視線に沿って散乱する)に加えて、多くの条件が目の中の散乱の実際の幾何学的形状に影響を与える(すなわち、黄斑内の前方光散乱だけではない)、視力を低下させる。これは、ハローとスポークの一般的な外観(または十分に衰弱する場合、陽性ジフォトプシア(PDP)によって記述される(例えば、 図3参照)。PDPは、白内障を有する人に加えてレーシック矯正手術8 を受けた個人に共通の副作用である(しばしば臨床的に「耐え難い」PDP9と呼ばれる -この人口統計は、70歳以上の人口のおよそ半分を含む)。PDPは、手術自体が角膜に不均一性を作り出し、レンズカプセル内のインプラントの座席が不完全であり、多くのレンズ設計がプレスビオペーアなどのいくつかの問題に対処しながら、スポッキングやハローなどの他の問題を作成するので、白内障手術によって修正されないことがよくあります。例えば、Buckhurstらは、眼内散乱が異なる透明眼レンズ(IOL)設計間で同じであったが、多焦点レンズが有意なPDP10を生み出したことを示した。
視覚的なハロー/スポークを正確に測定するように設計された最初のハロメーターは、ロバート・エリオットによって1924年に記述されました。デバイスは本質的に小さな開口部とスライドルールを備えたボックス内のランプでした(以前のバージョンでもろうそくからの視覚効果の図面を使用していました)。そのテーマのいくつかのバリエーションは、アストンハロメーターと呼ばれるデバイスが最終的に市場に到達するまで9に続きました。この装置10,11は、タブレットコンピュータの中央にある明るい白色LEDに基づいている(被験者は、0.5°ステップで遠心移動するタブレットを取り囲む文字を識別する)。前述のとおり、この設計の課題の 1 つは、白色の LED は太陽に適さないということです。もう一つは、単にソース(単一のLED)が重要なハローとグレアスポークを誘発するのに十分明るくなっていないということです。研究者たちは、光散乱を増加させる(およびタブレットの表面からの鏡反射を減少させる)するためにバンゲッター閉塞箔(本質的にディフューザー)を課した。しかし、これはソースを混乱させるリスクがあります(すなわち、散乱の多くは、目の中の不均一性ではなく、定量化する必要がある変数ではなく、拡散器から来ています)。ハロメーターの再設計には、これらの問題に対処するためのいくつかの機能があります。まず、広帯域キセノンを太陽シミュレータ12として使用し、エリオットが導入した元の開口法を精密中心キャリパーで使用する。
中央開口を形成する光シールドは、光の広がりを測定するためにゆっくりと離れて移動することができる2つの小さな開口部に分離することができるという付加的な利点を有する(本質的には、行動に由来する点広がり関数;図4を参照)。この設計は、フォトクロミックコンタクトレンズ13の光学特性を評価するために、最近のいくつかの研究で使用されています。一緒に、ハローとスポークの直径を測定し、2点光源(光広がり)とグレア視力の間の最小距離を測定し、患者が現実世界の条件を使用してまぶしさに苦しむことだけでなく、どのように対処する。眼内の光散乱の行動効果は、単一現象4、14、15ではない。これらの変数はそれぞれ、視覚機能における分散の比較的ユニークな側面を説明します。ハローは、例えば、結晶レンズから主に生じる前方光散乱から生じる。スポーク(本質的には毛様性冠動脈)は、光路14、16に沿って小粒子散乱から生じる回折および収差に由来する。
注: 以下の議定書に記載されている手順は、ヒトの研究に関するすべての制度ガイドラインに準拠しています。この研究は、ジョージア大学の機関審査委員会によって承認され、実験手順は、良い臨床実践ガイドラインとヘルシンキ宣言の倫理原則に従って行われました。
1. グレア視力装置の構築
注: 図 5に、システムの概念図を示します。
2. グレア認識の視力測定
メモ:実験セッションの開始時に、システム内のすべての光学要素が整列し、光強度(減衰なし)が正しく、被写体の目が適切な位置にあることが確認されます。その後、タスクは被験者(文字識別)に説明され、刺激は異なるレベルの強度でランダムな順序で提示されます。目標は、被験者が個々の文字を正しく識別できる最高強度を見つけることです(実際のしきい値は75%の正しい検出で原用的に定義され、6は8から正しい)。
3. ハロメーター装置の構築
4. グレアジオメトリ
注: テストの前に、被験者は自然なシーンでハローとスターバーストの出現の例を提供しました( 図3を参照)。
グレア視力測定では、20人の若い被験者(平均年齢=19歳、標準偏差(SD)=1年)を良好な視力で試験した。 図6 に示す結果は、1つの比較的明るい強度レベルで見られる文字数の変動を示しています。データを分析する別のアプローチは、正しい識別を使用して、8個中6個の識別(75%の正しい識別でエネルギー)として定義された閾値を持つ心理関数を生成することです。 図6に示すように、健康な若い被験者をテストする場合でも、広いバリエーションが存在します。
ハローおよびスポークメジャーからのデータは図7A,Bに示されており、23人の若い被験者(平均年齢=20歳、SD=4年)の異なるサンプルから得られたものである。両方のサンプルは、ジョージア大学の学生集団から募集されました.これらの被験者はいずれも視力が良く(20/20)、クリアコンタクトレンズで矯正された。2つの光点を別個として解決するために必要な最小距離(mm)(ここでは2点の閾値)も測定した。これらのデータは、図 8に示します。
図6、図7、および図8に示すように、サンプルが非常に均質であるにもかかわらず(視力の良い比較的若い健康な観察者で構成される)、散乱の行動尺度には大きなばらつきがあった。これは、視覚機能の標準的な臨床尺度(例えば、視力)が、現実世界の状況下での視覚性能に影響を与える可能性が高い多くの視覚属性を定量化できないことを示唆している。
図1:夜間運転のシナリオを2つ挙げる。(A)道路の歩行者がはっきりと見える車のヘッドライトからの最小眼内散乱。(B)車のヘッドライトから高眼内散乱し、道路の歩行者を隠す。この図の大きなバージョンを表示するには、ここをクリックしてください。
図2:真昼の太陽光(赤)、キセノンアーク灯光源(黒)、高輝度の白色LED光源(青)のスペクトル分布を表すグラフ。 略語: LED = 発光ダイオード この図の大きなバージョンを表示するには、ここをクリックしてください。
図3:PDP現象の例:スポーク(左端)、ハロー(左)、スターバースト(右)、2点光散乱(右端)の例 をクリックして、この図の大きなバージョンを表示します。
図4:ポイントスプレッド機能の意味表現と車のヘッドライトの視覚的なイラスト Y 軸の相対エネルギーと x 軸上の視覚的な角度。2 つの明るい光の点(ヘッドライト)の間の分離が、その幅の動作尺度である方法を視覚的に示します。 この図の大きなバージョンを表示するには、ここをクリックしてください。
図5: グレア視力システムの概念図。 成分としては、(a)キセノン光源、(b)コリメーティングレンズ、(c)水浴、(d)焦点レンズ、(e)円形フィルタ(100mm中性密度フィルタ)、(f)フィルターホルダー、(g)レンズ、(h)円形回転ホイールの文字絞り、(i)回折補正(レンズ)、(j)円形強力なフィルターのデジタル読み出しが含まれる。略語: CL = コリメーティングレンズ;FL = 焦点レンズ;L = レンズ;TL = 試用レンズ。 この図の大きなバージョンを表示するには、ここをクリックしてください。
図6: 各被験者が明るい定数(絶対エネルギー、16,392 cd/m2)でいつ明るさで保持されたかを識別できた文字の数を示す縦棒グラフをクリックして、この図の大きなバージョンを表示してください。
図7: 23人の若くて健康な観察者のサンプルの個体差を示す縦棒グラフ。 (B)スターバーストジアマーグラフの個人差この図の大きなバージョンを表示するには、ここをクリックしてください。
図8: 2つの小さな光の点が重ならない最小距離を示す縦棒グラフ(2点閾値)。 この図の大きなバージョンを表示するには、ここをクリックしてください。
眼内散乱の視覚効果は、しばしば、グレア障害と不快感17,18と評価される。これらの方法は、強烈な光に伴う機能不全とわずかな痛みに直接焦点を当てますが、視力を無効にする方法に直接焦点を当てるのではなく、直接焦点を当てます。しかし、眼内散乱は強烈なときに視力に影響を与えるだけではないので、どのように重要です。低強度の視覚画像(例えば、低輝度、低コントラストターゲット)であっても、光散乱によって劣化し得る。基礎となる光学系15は、ストロール比、点広がり関数、または拡散指数(大きく輝度とは無関係)によって記述することができる。もう一つの方法は、低輝度(この設定では10 cd/m2)でも有効であり、2点光源の分離の測定を伴う。より広いポイントスプレッド機能を持つ個人は、2つの小さな光の点が異なって見える前に、より多くの分離を必要とします。2つの小さな点光源の広がりを定量化するレイリー基準法は、長い歴史を持つ19.本例では、この方法は、その生態学的妥当性を高めるために適合した(例えば、昼日光をシミュレートする白いキセノンを用いて)。
図5 は、グレア視力システムの概念図を示す。本質的には、それは太陽光をシミュレートする明るい白色の光源から始まります(キセノン電球は通常、良い選択であり、1000ワットは十分な強度を提供します)。光源からの光は水浴(可視光に透明)で冷却され、その後、焦点を合わせたビームで光を運ぶ一連のレンズによって操作されます。円形の中性密度フィルターは、文字状の開口部を通過する光を減衰します。被験者は、単離された刺激から一定の距離(〜7m)に座り、一度に片目(アイカップで固定された眼球位置)で刺激を見ます。被験者が見ているのは、それ自体がまぶしさの源である一連の文字です。特定の被験者に対して光が強すぎると、一貫した正しい識別は不可能です。グレア視力の閾値は、任意の数の古典的な心理物理学的手法を使用して定義することができる。
ハロメータの基本設計は、上述のグレア視力装置に類似しており、同じ光源(強烈なキセノン)と光学表13を使用することができる。2つの要素は、小さな可動開口部とセンタリング精密キャリパーを含むライトシールドの導入です。ライトシールドの開口部は直径4mmで、光源によってバックライトが付いています。この小さな穴を通過する広帯域光は、広がる明るい点源(観察者の光学特性によって決定されるパターンを作成するので、スポークの方が多く、他の人はより拡散性のハローイングを持っている)、キャリパーはこの幾何学的形状を測定するために使用されます。ライトシールドの4mm開口は、2つの小さな開口部(それぞれ2mm)に分けることができ、それぞれの広がりが重ならないまでゆっくりと離れて移動することができます。その距離(ライトシールド上のマイクロメートルで追跡)は、行動に由来する点広がり関数(2点閾値)として使用されます。
ハロー(ポイントソースの周りの拡散光)とスターバースト(ポイントソースから外側に放射する同心円光線)の直径は、限界の方法(上昇モードと降順モード)を使用して決定した。研究者は、被験者がガイドがちょうどハローまたはスターバーストを囲むことを示すまで、キャリパーの顎(中央から外側)を動かした。2点メジャーを行う場合、2つの小さなアバット開口はゆっくりと(水平に)離れて移動し、被験者は各ライトポイントからの広がりが重複しない場合(例えば、2つの点の間に小さな黒い空間を知覚したとき)を示します。システムの技術的な概略は、ハモンドら13によって記述されています。
光の散乱方法を測定すると、問題の性質(および修正)が指示されます。スターバースト(周辺スポーク)、ハロー、グレア障害、不快感はすべて個々の特徴を持っています。老化、疾患9、または手術8によって眼が損なわれると、これらの光学現象も異なる方法で変化する。例えば、ハローは比較的均質なベールと見なされることが多いのに対し、スターバーストは均質ではなく、周辺に広がる傾向がある。このパターンは、ハモンドら13によって明確に示されています。
これらの異なるパターンは、異なるタイプの補正7の必要性を示唆している。例えば、黄斑色素(黄斑に濃縮された黄色色素)は、中央グレア(視線における光のベール)20を補正するのに有用であることが示されている。しかしながら、これらの顔料は網膜窩の中および周囲にしかないため、その領域21の外側の光散乱には影響を与えない。この目的のために、眼のより前部の濾過は、着色眼鏡22、コンタクトレンズ13、または眼内インプラント23の使用などで望ましい。すべてのものが等しく、最適なまぶしさの視力を持つ個人は、貧しいまぶしさの視力を持つ人よりもはるかに高い強度で文字を識別することができます。
過去の研究では、光散乱の尺度は視力4などのより一般的に測定された指標とうまく相関しないことも示されている。これは、視力判定(スネレンチャートに似た)で直接畳まれた光散乱法の開発を動機づけた。以前の方法は、認識とは対照的に検出または解像度(例えば、様々な周波数の格子内の個々のバーを見る)に基づいていました。しかし、認識の視力は、他の形態と同様に、画像内の2つの要素間のコントラストに依存する。光散乱はその差を劣化させることができ、現在のグレア視力評価における依存的尺度であった。この若い、主に均質なサンプルの経験的な結果によって示されるように、すべてのものが等しく、光散乱効果が現実世界の条件下でどのように視覚機能に大きな個人差がある。
著者らは開示するものは何もない。
著者らは、ハロメーターデータの収集に関する彼女の支援を担当するサラ・セイント博士を認めたいと考えています。
Name | Company | Catalog Number | Comments |
Glare Recognition Acuity: *Indicates handmade equipment | |||
100 mm Circular Neutral Density Filter | Edmund's Optical | Stock #54-082 | |
1000W xenon arc lamp Bulb) | Newport | Model 6271 | |
Breadboard optics table | Newport | Model IG-36-2 | |
*Chin rest assembly | |||
*Circular rotator and letter apertures | Letter apertures can be constructed or purchased as metal stencils | ||
*Digital potentiometer and readout | This simply supplies a nominal readout for the position of the circular wedge (essentially a voltmeter connected to a potentiometer) | ||
Plano-convex achromatic lenses | Edmund's Optical | Model KPX187-C | 100 mm EFL, anti-reflective coating in the visible, 50.8 mm diameter (mounting is also available from this supplier) |
Radiometer | Graseby Optronics United Detection Technology (UDT) | Model S370 | |
Research arc lamp housing and power supply | Newport | Model 66926 | |
Spectral radiometer | PhotoResearch Inc | PR650 | |
Trial lenses | Premier Ophthalmic Services | SKU: RE-15015 | |
*Water bath | Two optical flats enclosing a cylindrical tube filled with water containing a small amount of formalin | ||
Halometer: *Indicates handmade equipment | |||
1000 W xenon arc lamp | Same as above | ||
Arc lamp power supply | Same as above | ||
Breadboard optics table | Same as above | ||
*Calipers | |||
*Chin and forehead rest | |||
Digital micrometer | Widely available | ||
*Light shield | Must be able to serve as a baffle, equipped with a collapsible baffle, equipped with two movable apertures (2 mm each) | ||
Plano-convex achromatic lens | Edmund's Optical | 200 mm Effective Focal Length |
このJoVE論文のテキスト又は図を再利用するための許可を申請します
許可を申請さらに記事を探す
This article has been published
Video Coming Soon
Copyright © 2023 MyJoVE Corporation. All rights reserved