このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。
Here, we aim to visualize the zonation of biological productivity in Narragansett Bay, Rhode Island, based on the nitrogen mass balance model. The results will inform nutrient management in the coastal regions to reduce hypoxia and eutrophication.
Primary productivity in the coastal regions, linked to eutrophication and hypoxia, provides a critical understanding of ecosystem function. Although primary productivity largely depends on riverine nutrient inputs, estimation of the extent of riverine nutrient influences in the coastal regions is challenging. A nitrogen mass balance model is a practical tool to evaluate coastal ocean productivity to understand biological mechanisms beyond data observations. This study visualizes the biological production zones in Narragansett Bay, Rhode Island, USA, where hypoxia frequently occurs, by applying a nitrogen mass balance model. The Bay is divided into three zones - brown, green, and blue zones - based on primary productivity, which are defined by the mass balance model results. Brown, green, and blue zones represent a high physical process, a high biological process, and a low biological process zone, depending on river flow, nutrient concentrations, and mixing rates. The results of this study can better inform nutrient management in the coastal ocean in response to hypoxia and eutrophication.
Primary productivity, the production of organic compounds by phytoplankton, fuels ecosystem food webs, and is important for understanding the system's function in response to environmental changes1,2. Estuarine primary productivity is also closely linked to eutrophication which is defined as excessive nutrients in the ecosystem1, causing several harmful consequences in the coastal regions, such as an overgrowth of phytoplankton leading to large algal blooms and subsequent hypoxia3,4. Importantly, primary productivity in estu....
1. Applying the N-mass balance model
Three theoretical zones of Narragansett Bay based on the N-mass balance model
The three theoretical zones in Narragansett Bay (NB) were defined based on the N-mass balance model results, in which the DIN data were applied to fifteen boxes of NB, and then the mean DIN in each box was converted to the PPP rates for the summer period. As shown in Figure 2, based on the mean summer (June to September) PPP rates of each box, three (brown, green, and blue) zones in NB were i.......
This study estimated the extent of nutrient impacts from riverine inputs in Narraganset Bay (NB) based on the N-mass balance model by defining the three theoretical zones. Historically, hypoxic zones appeared near the Providence River, the western side of Greenwich Bay, and Mount Hope Bay during the summer period18, which were defined as brown zones in this study. Moreover, the zonation of NB is comparable to the results of a previous study19, which examined nutrient concen.......
This study was supported by the National Science Foundation (OIA-1655221, OCE-1655686) and Rhode Island Sea Grant (NA22-OAR4170123, RISG22-R/2223-95-5-U). We also would like to thank the Rhode Island School of Design for developing the Vis-A-Thon project and this visualization.
....Name | Company | Catalog Number | Comments |
Adobe Illustrator | Adobe | version 27.6.1 | https://www.adobe.com/products/illustrator.html |
Ampersand Gessobord Uncradled 1/8" Profile 8" x 8" | Risdstore | 70731053088 | https://www.risdstore.com/ampersand-gessobord-8x8-flat-1-8-profile.html |
Ocean Data View software | https://odv.awi.de/en/software/download/ | ||
W-Series (Wide) Flexible LED Strip Light - Ultra Bright (18 LEDs/foot) | aspectLED | SKU AL-SL-W-U | https://www.aspectled.com/products/w-wide-5050-ultra-bright?gclid=CjwKCAjwm4ukBhAuEiwA0z QxkyqisRPqBcHvXEW8KcJE-bK0d2cvGtqlOxXWJI_ E2rd6DzttPR0FLRoCgfkQAvD_BwE |
This article has been published
Video Coming Soon
JoVEについて
Copyright © 2023 MyJoVE Corporation. All rights reserved