ソース: ロベルト ・ レオン、ブラックスバーグ, バージニア バージニア工科大学土木環境工学科
土木インフラ プロジェクトの金属疲労の勉強の重要性によってもたらされたスポット ライトに銀橋の崩壊ポイント プレザント、1967 年にウェスト バージニア州。オハイオ州川に架かる eyebar チェーン、サスペンションの橋崩壊夕方のラッシュアワーの間に小さい 0.1 インチ欠陥を持つ単一 eyebar の失敗の結果として 46 人が死亡します。欠陥繰返し条件と脆性崩壊の原因に失敗した後の重要な長さに達した。このイベントは、ブリッジ エンジニアの方々 の注目を集めて、テストと金属疲労を監視の重要性を強調しました。
通常のサービス条件下で材料はサービス (または毎日) 負荷の多数の適用を受けることが。これらの負荷は、通常構造の終局耐力の 30-40% ではせいぜい。しかし、終局耐力をはるかに下回る大きさで、繰り返し荷重の発生後、材料は疲労破壊と呼ばれるものを体験できます。疲労破壊は突然、重要な事前の変形が生じる、き裂成長と急速な伝播リンクされます。疲労は疲労抵抗 (表 1) に影響を与える多くの要因の複雑なプロセスです。この複雑さは、橋梁、クレーン、車両や航空機のほぼすべての種類など繰り返し荷重を受ける構造物の日常的かつ徹底的な検査のため不可欠な必要性を強調します。
条件を強調 | 材料特性 | 環境条件 |
|
|
|
表 1。疲労に影響する要因
応力サイクルの数と範囲の観点から、最終的な結果をする必要があります (表 2) を集計し、プロットすると、図 2 に示すよう。標本の実際の降伏応力は 65.3 ksi とその引張強さは 87.4 ksi ので、ストレスはここで示されている範囲は 23% と収量の 92% の間に対応します。