로그인

The histone proteins have a flexible N-terminal tail extending out from the nucleosome. These histone tails are often subjected to post-translational modifications such as acetylation, methylation, phosphorylation, and ubiquitination. Particular combinations of these modifications form “histone codes” that influence the chromatin folding and tissue-specific gene expression.

Acetylation

The enzyme histone acetyltransferase adds acetyl group to the histones. Another enzyme, histone deacetylase, removes the acetyl group from acetylated histones. The lysine amino acids at position 4 and 9 of N-terminal histone tail are often acetylated and deacetylated. Acetylation increases the negative charge of histones. This weakens the DNA-histone interaction resulting in loosening of chromatin and increased access to DNA. For example, in the erythroid cells, beta-globin gene is associated with acetylated histones that increase its expression. In non-erythroid cells where the gene is inactive, it is found to be associated with nonacetylated histones.

Methylation

The histone tails at the lysine 9 position of histone H3 can be di- or tri-methylated by enzyme histone methyltransferase. This methylation can initiate the binding of nonhistone proteins and increase chromatin compaction. Methylation increases the positive charge on the histones, resulting in increased affinity between negatively charged DNA and histones and higher chromatin compaction. Repressed chromatin, also known as heterochromatin, is highly methylated.

Summary table of histone modifications and their effect on gene expression

Histone modification Effect on gene expression
Acetylated lysine Activation
Hypoacetylated lysine Repression
Phosphorylated serine/threonine Activation
Methylated arginine Activation
Methylated lysine Repression
Ubiquitinylated lysine Activation/Repression

The histone codes or modifications are epigenetically inherited, meaning these modifications are not genetically coded. Hence, these modifications are faithfully passed on to the next cell during each cell division as an epigenetic memory.

Tags
Histone ModificationNucleosomeHistone Core ProteinsH2AH2BH3H4Histone VariantsAmino terminal TailsCovalent ModificationsAcetylationPhosphorylationMethylationEnzymesWritersErasersHistone Variants And ModificationsSpecific Signals For The CellDNA Damage RepairGene ExpressionGene SilencingChromatin Modification

장에서 5:

article

Now Playing

5.12 : 히스톤 변형

DNA와 염색체 구조

12.6K Views

article

5.1 : DNA 포장

DNA와 염색체 구조

29.8K Views

article

5.2 : 유전자적 주형으로서의 DNA

DNA와 염색체 구조

21.2K Views

article

5.3 : 유전자의 구성

DNA와 염색체 구조

11.8K Views

article

5.4 : 염색체 구조

DNA와 염색체 구조

22.1K Views

article

5.5 : 염색체 복제

DNA와 염색체 구조

8.5K Views

article

5.6 : 뉴클레오솜

DNA와 염색체 구조

15.6K Views

article

5.7 : 뉴클레오솜 중심입자

DNA와 염색체 구조

11.6K Views

article

5.8 : 뉴클레오솜 리모델링

DNA와 염색체 구조

8.7K Views

article

5.9 : 염색질 포장

DNA와 염색체 구조

14.8K Views

article

5.10 : 핵형분석

DNA와 염색체 구조

10.0K Views

article

5.11 : 위치효과얼룩

DNA와 염색체 구조

6.2K Views

article

5.13 : 염색질 변형의 확산

DNA와 염색체 구조

8.0K Views

article

5.14 : 램프브러시염색체

DNA와 염색체 구조

7.8K Views

article

5.15 : 다사염색체

DNA와 염색체 구조

9.8K Views

See More

JoVE Logo

개인 정보 보호

이용 약관

정책

연구

교육

JoVE 소개

Copyright © 2025 MyJoVE Corporation. 판권 소유