로그인

Replicative cell senescence is a property of cells that allows them to divide a finite number of times throughout the organism's lifespan while preventing excessive proliferation. Replicative senescence is associated with the gradual loss of the telomere — short, repetitive DNA sequences found at the end of the chromosomes. Telomeres are bound by a group of proteins to form a protective cap on the ends of chromosomes. Embryonic stem cells express telomerase — an enzyme that adds the telomeric repeat sequence and enables repetitive cell division; however, in adults, telomerase is active only in the cells that need to divide regularly.

Because telomerase is inactive in most human somatic cells, the length of the telomere decreases with every cell division. After a critical length, telomere shortening leads to permanent cell cycle arrest. This mechanism is assumed to protect against cancer development by limiting the abnormal proliferation of tumors; however, a rare mutation can activate telomerase, which reconstructs the telomere region, allowing the cells to proliferate. Thus, telomerase is a perfect target for specific anticancer therapy, as most cancer cells express telomerase while normal cells do not.

The relation between telomere length and tumor formation has been experimentally verified using oncogenic mice. Oncogenic mice are mouse models that have cancer-causing genes. When such oncogenic mice are crossed with telomerase-deficient mice that lack telomerase activity, the resultant progeny mice express shorter telomeres than the oncogenic parent. These progeny mice, when interbred, generate successive generations that have progressively shorter telomeres. The frequency of tumor formation is studied by treating the progeny mice with carcinogens at every generation. As per the results, the late generation mice with shorter telomeres exhibit a reduced frequency of tumor formation compared to the early generation mice that maintain longer telomeres. This proves that limiting the replicative capacity of cells suppresses tumor formation.

Tags
Replicative Cell SenescenceFinite Number Of Cell DivisionsTelomereRepetitive DNA SequencesProtective Cap On ChromosomesTelomeraseSomatic CellsTelomere ShorteningPermanent Cell Cycle ArrestCancer DevelopmentAnticancer TherapyTelomerase Expression In Cancer CellsTelomere Length And Tumor FormationOncogenic Mice

장에서 17:

article

Now Playing

17.9 : Replicative Cell Senescence

세포의 증식

3.5K Views

article

17.1 : 세포 주기란 무엇입니까?

세포의 증식

9.5K Views

article

17.2 : 계면

세포의 증식

4.3K Views

article

17.3 : 세포 주기 제어 시스템

세포의 증식

11.6K Views

article

17.4 : 포지티브 레귤레이터 분자(Positive Regulator Molecules)

세포의 증식

5.1K Views

article

17.5 : Cdk 활성 억제

세포의 증식

4.5K Views

article

17.6 : S-CDK는 DNA 복제를 시작합니다.

세포의 증식

4.6K Views

article

17.7 : M-CDK는 유사분열로의 전환을 주도합니다.

세포의 증식

5.4K Views

article

17.8 : 미토겐과 세포주기

세포의 증식

6.2K Views

article

17.10 : 비정상적 증식

세포의 증식

4.3K Views

article

17.11 : 세포는 성장과 증식을 조율합니다.

세포의 증식

4.4K Views

JoVE Logo

개인 정보 보호

이용 약관

정책

연구

교육

JoVE 소개

Copyright © 2025 MyJoVE Corporation. 판권 소유