로그인

Metastasis is the spread of cancer cells from the original site to distant locations in the body. Cancer cells can spread via blood vessels (hematogenous) as well as lymph vessels in the body.

Epithelial-to-Mesenchymal Transition

The epithelial-to-mesenchymal transition or EMT is a developmental process commonly observed in wound healing, embryogenesis, and cancer metastasis. EMT is induced by transforming growth factor-beta (TGF-β) or receptor tyrosine kinase (RTK) ligands, which further activate the transcription factors, such as zinc-finger proteins - Snail, Slug, Twist, and E47. These transcription factors bind to the promoter elements of genes encoding the adherens junction protein E-cadherin and downregulate them. They also recruit histone deacetylase (HDAC) to facilitate chromatin condensation and subsequent transcriptional repression of E-cadherins. Reduced E-cadherin expression results in reduced cell-cell adhesion, modulation of Rho GTPase function, and cell polarity loss, allowing cells to escape tissue constraints and enter the blood circulation.

Once the blood circulating cancer cell reaches a new site, the reverse process converts the mesenchymal-like circulating cells into tumor cells that can adhere to the new environment, leading to secondary tumor formation. This process is called mesenchymal-to-epithelial transition or MET.

Metastasis is a Chance Event

The cancer cells that intravasate into blood vessels have a minimal chance to survive and metastasize. The circulating tumor cells (CTC) in the blood and lymph are routinely neutralized by the immune cells (natural killer cells, monocytes/macrophages, and neutrophils). Although the survival rate of CTCs is low, there are several factors that aid cancer cells to survive during circulation. For example, blood platelets shield the CTCs against the binding of natural killer (NK) cells. Platelets also transfer MHC or major histocompatibility complex to CTCs, allowing cancer cells to escape immune surveillance. Cancer cells can also inhibit NK cell activity by downregulating the NKG2D immunoreceptor.

Given the complexity of metastasis and genetic heterogeneity among the tumor cell population, these factors collectively make cancer difficult to cure. Creating therapeutics and treatments that specifically target stages of metastasis may lead to the reduction of the incidence of cancer deaths.

Tags
MetastasisCancerEpithelial to mesenchymal TransitionEMTTransforming Growth Factor betaTGFReceptor Tyrosine KinaseRTKSnailSlugTwistE47E cadherinHDACRho GTPaseMesenchymal to epithelial TransitionMETCirculating Tumor CellsCTCsNatural Killer CellsNK CellsPlateletsMHCNKG2D

장에서 20:

article

Now Playing

20.6 : Metastasis

Cancer

5.3K Views

article

20.1 : 암이란 무엇인가?

Cancer

9.8K Views

article

20.2 : 암은 단일 세포의 체세포 돌연변이에서 비롯됩니다.

Cancer

11.1K Views

article

20.3 : 종양 진행

Cancer

5.9K Views

article

20.4 : 암세포의 적응 메커니즘(Adaptive Mechanisms in Cancer Cells)

Cancer

5.4K Views

article

20.5 : 종양 미세환경

Cancer

6.2K Views

article

20.7 : 암에 중요한 유전자 I: 원발암유전자

Cancer

8.2K Views

article

20.8 : 레트로바이러스에 의한 암의 기전

Cancer

4.8K Views

article

20.9 : 라스 유전자

Cancer

6.0K Views

article

20.10 : 종양 억제 유전자 기능 상실

Cancer

4.5K Views

article

20.11 : mTOR 신호 전달 및 암 진행

Cancer

3.6K Views

article

20.12 : 암 줄기세포와 종양 유지 관리

Cancer

4.5K Views

article

20.13 : 암 연구의 마우스 모델

Cancer

5.4K Views

article

20.14 : 암 예방

Cancer

5.9K Views

article

20.15 : 암 치료

Cancer

7.2K Views

See More

JoVE Logo

개인 정보 보호

이용 약관

정책

연구

교육

JoVE 소개

Copyright © 2025 MyJoVE Corporation. 판권 소유