JoVE 비디오를 활용하시려면 도서관을 통한 기관 구독이 필요합니다. 전체 비디오를 보시려면 로그인하거나 무료 트라이얼을 시작하세요.
Method Article
Here we describe our strategy for obtaining stable, well-isolated single-unit recordings from identified inhibitory interneurons in the anesthetized mouse cortex. Neurons expressing ChR2 are identified by their response to blue light. The method uses standard extracellular recording equipment, and serves as an inexpensive alternative to calcium imaging or visually-guided patching.
신경 생리에서 중요한 과제는 대뇌 피질의 다수의 억제 세포 유형의 응답 특성과 기능을 특성화하고있다. 우리는 여기 리마 1 동료들에 의해 개발 된 방법을 사용하여 마취 마우스 피질에서 확인 된 억제의 interneurons 안정적인, 잘 격리 된 단일 단위 기록을 얻기위한 우리의 전략을 공유 할 수 있습니다. 녹음은 특정 신경 세포의 소집단에 Channelrhodopsin-2 (ChR2)를 표현 생쥐에서 수행됩니다. 인구의 회원은 푸른 빛에 대한 간단한 플래시에 대한 반응으로 식별됩니다. "PinP의"이라, 또는 신경 세포 집단의 Photostimulation 이용한 식별 - -이 기술은 표준 세포 외 기록 장치로 구현 될 수있다. 이것은 유전자 식별 세포 외 기록 타겟팅 목적, 칼슘 이미징 또는 시각 유도 패치에 저렴하고 대안적인 접근이 될 수있다. H오히려 우리는 매일 연습하는 방법을 최적화하기위한 지침을 제공합니다. 우리는 parvalbumin 양성 (태양 광 +) 세포를 대상으로 특별히 우리의 전략을 정제하지만 이러한 소마토스타틴 (somatostatin) 발현 (SOM +)를하고 calretinin 발현 (CR +)의 interneurons으로뿐만 아니라 다른 interneuron 유형에 대해 작동하는 것을 발견했다.
Characterizing the myriad cell types that comprise the mammalian brain has been a central, but long-elusive goal of neurophysiology. For instance, the properties and function of different inhibitory cell types in the cerebral cortex are topics of great interest but are still relatively unknown. This is in part because conventional blind in vivo recording techniques are limited in their ability to distinguish between different cell types. Extracellular spike width can be used to separate putative parvalbumin-positive inhibitory neurons from excitatory pyramidal cells, but this method is subject to both type I and type II errors2,3. Alternatively, recorded neurons can be filled, recovered, and stained to later confirm their morphological and molecular identity, but this is a pain-staking and time-consuming process. Recently, genetically identified populations of inhibitory interneurons have become accessible by means of calcium imaging or visually guided patch recordings. In these approaches, viral or transgenic expression of a calcium reporter (such as GCaMP) or fluorescent protein (such as GFP) allows identification and characterization of cell types defined by promoter expression. These approaches use 2-photon microscopy, which requires expensive equipment, and are also limited to superficial cortical layers due to the light scattering properties of brain tissue.
Recently, Lima and colleagues1 developed a novel application of optogenetics to target electrophysiological recordings to genetically identified neuronal types in vivo, termed “PINP” – or Photostimulation-assisted Identification of Neuronal Populations. Recordings are performed in mice expressing Channelrhodopsin-2 (ChR2) in specific neuronal subpopulations. Members of the population are identified by their response to a brief flash of blue light. Unlike many other optogenetic applications, the goal is not to manipulate circuit function but simply to identify neurons belonging to a genetically-defined class, which can then be characterized during normal brain function. The technique can be implemented with standard extracellular recording equipment and can therefore serve as an accessible and inexpensive alternative to calcium imaging or visually-guided patching. Here we describe an approach to PINPing specific cell types in the anesthetized auditory cortex, with the expectation that the more general points can be usefully applied in other preparations and brain regions.
In cortex, PINP holds particular promise for investigating the in vivo response properties of inhibitory interneurons. GABAergic interneurons comprise a small, heterogeneous subset of cortical neurons4. Different subtypes, marked by the expression of particular molecular markers, have recently been shown to perform different computational roles in cortical circuits5-9. As genetic tools improve it may eventually be possible to distinguish morphologically- and physiologically-separable types that fall within these broad classes. We here share our strategy for obtaining stable, well-isolated single-unit recordings from identified inhibitory interneurons in the anesthetized mouse cortex. This strategy was developed specifically for targeting parvalbumin-positive (PV+) cells, but we have found that it works for other interneuron types as well, such as somatostatin-expressing (SOM+) and calretinin-expressing (CR+) interneurons. Although PINPing is conceptually straightforward, it can be surprisingly unyielding in practice. We learned a number of tips and tricks through trial-and-error that may be useful to others attempting the method.
참고 : 오레곤 동물 관리 및 사용위원회의 대학 승인 한 다음 프로토콜은 건강 지침의 국립 연구소에 따른다.
1. 급성 수술
2. 녹화 환경
3. 스트레이트 떠있을-에 '
우리는 여기에 "리마 등. 한. 표 1 세부 제안 마취 칵테일, 케타민-Medetomidine - 아세 프로 마진을 (가 개발 한 optogenetic 방법을 사용하여, 마취 마우스 피질에서 유전 분류 억제의 interneurons에서 단일 단위 기록을 얻기위한 우리의 전략을 공유 KMA ").도 1은 도표 4. 3 아두 이노 마이크로 컨트롤러와 광 출력 게이팅위한 구성 및 코드를 포함하는도.도 ...
떠있을 개념적으로 간단하지만, 실제로 문제가 될 수 있습니다. 성공의 주요 결정은 전극의 선택입니다. 전기 청취 반경은 중요한 파라미터이다. 이것은 선단이 약간 먼 거리 ChR2 + 셀로부터 정지되었을 때에 하나 이에 따라 어드밴스의 속도를 조정할 수 있도록, 광 유발 스파이크를 검출하기에 충분히 커야한다. 동시에, 양호한 단일 유닛 분리 가능하도록 충분히 제한되어야한다. 즉, 전극은 이웃...
The authors have no competing financial interests.
This work was funded by the Whitehall Foundation and the NIH. We thank Clifford Dax (University of Oregon Technical Support Administration) for his help and expertise in designing a circuit for light delivery.
Name | Company | Catalog Number | Comments |
ChR2-EYFP Line | Jackson Colonies | 12569 | |
Pvalb-iCre (PV) Line | Jackson Colonies | 8069 | |
Sst-iCre (SOM) Line | Jackson Colonies | 13044 | |
Cr-iCre (CR) Line | Jackson Colonies | 10774 | |
Agarose | Sigma-Aldrich | A9793 | Type III-A, High EEO |
Micro Point (dural hook) | FST | 10066-15 | |
Surgical Scissors | FST | 14084-09 | |
Scalpel | FST | 10003-12 (handle), 10011-00 (blades) | |
Puralube Ophthalmic Ointment | Foster & Smith | 9N-76855 | |
Homeothermic Blanket | Harvard Apparatus | 507220F | |
Tungsten Microelectrodes | A-M Systems | 577200 | 12 MΩ AC resistance, 127 μm diameter, 12° tapered tip, epoxy-coated |
Capillary Glass Tubing | Warner Instruments | G150TF-3 | |
Heat Shrink Tubing | DigiKey | A332B-4-ND | |
Zapit Accelerator | DVA | SKU ZA/ZAA | Use with standard Super Glue. |
Microelectrode AC Amplifier 1800 | AM Systems | 700000 | |
MP-285 Motorized Micromanipulator | Sutter | MP-285 | |
4-channel Digital Oscilloscopes | Tektronix | TDS2000C | |
Powered Speakers | Harman | Model JBL Duet | |
Manual Manipulator | Scientifica | LBM-7 | |
800 µm Fiber Optic Patch Cable | ThorLabs | FC/PC BFL37-800 | |
Power Meter | ThorLabs | PM100D (Power Meter), S121C (Standard Power Sensor) | |
475 nm Cree XLamp XP-E | DigiKey | XPEBLU-L1-R250-00Y01DKR-ND | LED power and efficiency are continually increasing, so we recommend checking for the latest products (www.cree.com). |
Arduino UNO | DigiKey | 1050-1024-ND |
JoVE'article의 텍스트 или 그림을 다시 사용하시려면 허가 살펴보기
허가 살펴보기This article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. 판권 소유