JoVE 비디오를 활용하시려면 도서관을 통한 기관 구독이 필요합니다. 전체 비디오를 보시려면 로그인하거나 무료 트라이얼을 시작하세요.
Method Article
드 노보 지방 생성 및 β - 지방산 산화는 간세포의 주요 대사 경로, 지방간 질환 등 여러 가지 대사 장애에 교란되는 경로를 구성한다. 여기에서 우리는 마우스 차 간세포의 분리를 보여와 β-지방산 산화 및 지방 생성의 정량화를 설명합니다.
Lipid metabolism in liver is complex. In addition to importing and exporting lipid via lipoproteins, hepatocytes can oxidize lipid via fatty acid oxidation, or alternatively, synthesize new lipid via de novo lipogenesis. The net sum of these pathways is dictated by a number of factors, which in certain disease states leads to fatty liver disease. Excess hepatic lipid accumulation is associated with whole body insulin resistance and coronary heart disease. Tools to study lipid metabolism in hepatocytes are useful to understand the role of hepatic lipid metabolism in certain metabolic disorders.
In the liver, hepatocytes regulate the breakdown and synthesis of fatty acids via β-fatty oxidation and de novo lipogenesis, respectively. Quantifying metabolism in these pathways provides insight into hepatic lipid handling. Unlike in vitro quantification, using primary hepatocytes, making measurements in vivo is technically challenging and resource intensive. Hence, quantifying β-fatty acid oxidation and de novo lipogenesis in cultured mouse hepatocytes provides a straight forward method to assess hepatocyte lipid handling.
Here we describe a method for the isolation of primary mouse hepatocytes, and we demonstrate quantification of β-fatty acid oxidation and de novo lipogenesis, using radiolabeled substrates.
Non-alcoholic fatty liver disease is one of the leading causes of liver disease in Westernized cultures1,2. Lipid accumulation within the liver is associated with cell death, fibrosis, and liver failure via yet unknown mechanisms3-6. In fatty liver disease, hepatocyte-mediated β-fatty acid oxidation and de novo lipogenesis are important determinants of net lipid accumulation7,8. This article will, therefore, focus on hepatocyte isolation, followed by quantification of β-fatty acid oxidation and de novo lipogenesis.
Numerous methodologies have been developed to interrogate hepatocyte lipid metabolism. Though it is possible to measure metabolism of fat in vivo using stable isotopes9,10, these methods are costly, and require large numbers of animals. Additionally, the ability to investigate the effect of exogenous chemicals is limited due to the nature of in vivo experimentation. In contrast, the isolation of primary hepatocytes from mouse liver provides an affordable avenue to pursue11. Furthermore, studying hepatocytes in culture allows investigators to study the effects of varying chemicals on lipid processing while circumventing the difficulties of in vivo experimentation. Finally, isolated hepatocytes avoid any confounding from varying genetics since they are derived from the liver of a single animal.
Here we isolate and culture of hepatocytes, and we measure β-fatty acid oxidation and de novo lipogenesis, using radiolabeled palmitate. The protocol detailed below is straight forward, effective, and reproducible.
모든 동물 실험은 지역 및 연방 규정에 따라 및 기관 IACUC 및 방사선 안전 관리의 승인을 수행해야한다.
1. 준비
기본 마우스 간세포 2. 분리
3. 지방산 산화 분석
경고 : 방사능의 사용은 위험 할 수 있습니다. 모든 구매, 저장, 취급, 및 디방사성 물질의 폐기에이 기관, 주, 연방 정부의 규정 및 지침에 따라 수행되어야한다.
4. 지방 생성 분석
3 × 10 7 총 세포 - 간세포 아이솔레이션는 일반적으로 1을 초래한다. 밤새 배양 한 후, 세포는 (그림 2) 이핵됩니다 많은 육각형를 나타납니다. 건강한 세포는 세포 죽음을 나타내는 있습니다 과립 또는 소포,없는해야한다.
일반적으로, 지방산 산화 분석은 시험 화합물 당 3-4 회 반복 실행됩니다. CO 2 샘플 카운트 산 용해성 물질 유래의 약 1/5이...
관류에 희생에서 시간은 이상적인 관류 및 간 콜라게나 소화 미만 3 분이어야합니다. 관류 매체 관류가 시작되면, 간은 즉시 빨간색은 엷은에서에 모양을 변경해야합니다. LDM과 부화의 약 10 분 후, 간은 부어 핑크 나타납니다. 관류이 불충분하다는 경우, 간은 이러한 변화를 나타내지 않으며, 이는 일반적으로 낮은 수율 간세포 초래할 것이다.
세척 단계 후, 절연 간세포 전에...
The authors indicate they have no conflicts of interest.
We would like to acknowledge Susan Gray and Umadevi Chalasani for their help with technical aspects of the hepatocyte isolation protocol. This work was supported by NIDDK grant 5R01DK089185 (to M.P. Cooper) and the DERC Pilot and Feasibility Program at UMMS (to M.P. Cooper).
Name | Company | Catalog Number | Comments |
Liver Perfusion Medium | Life Technologies | 17701038 | |
Liver Digest Medium | Life Technologies | 17703034 | Aliquot and store at -20 °C |
PBS | Corning | 21-040-CV | |
10X DPBS | Corning | 46-013-CM | |
DMEM | Corning | 10-017-CV | |
FBS | Life Technologies | 26140079 | |
Collagen | Life Technologies | A1048301 | |
Colloidal silica coated with polyvinylpyrrolidone | GE Life Sciences | 17-0891-01 | |
Sodium Pyruvate | Cellgro | 25-000-CI | |
Penicillin / Streptomycin | Cellgro | 30-001-CI | |
Insulin | Sigma | I0516-5ML | |
Dexamethasone | Sigma | D2915-100MG | |
Albumin (BSA), Fraction V | MP Biomedicals | 103703 | |
24-Well Culture Dish | Corning Falcon | 353047 | |
Tygon S3 Tubing | Cole Parmer | 06460-34 | |
Male Leur Lock to 200 Barb Connectors | Cole Parmer | 45518-00 | |
24 G x 3/4" Catheter | SurFlo | SROX2419CA | |
Perma-Hand Silk Suture | Ethicon | 683G | |
Cell Strainer | Corning Falcon | 08-771-2 | |
IsoTemp 3013HD Recirculating Water Bath | Fisher | 13-874-3 | |
MasterFlex C/L Peristaltic Pump | MasterFlex | HV-77122-24 | |
Microclamp | Roboz | RS-7438 | Pre-sterilize in autoclave |
5” Straight, Blunt-Blunt Operating Scissors | Roboz | RS-6810 | Pre-sterilize in autoclave |
24 mm Blade Straight, Sharp-point Microdissecting Scissors | Roboz | RS-5912 | Pre-sterilize in autoclave |
4” 0.8 mm Tip Microdissecting Forceps | Roboz | RS-5130 | Pre-sterilize in autoclave |
4” 0.8 mm Tip Full Curve Microdissecting Forceps | Roboz | RS-5137 | Pre-sterilize in autoclave |
60 ml Syringe | Becton Dickinson | 309653 | |
50 ml conical tubes | Corning Falcon | 352070 | |
BCA Protein Assay | Thermo Scientific | 23225 | |
Biosafety Cabinet | |||
CO2 Incubator | |||
Serological pipets | |||
1,000, 200, 20 μl pipet and tips |
JoVE'article의 텍스트 или 그림을 다시 사용하시려면 허가 살펴보기
허가 살펴보기This article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. 판권 소유