JoVE 비디오를 활용하시려면 도서관을 통한 기관 구독이 필요합니다. 전체 비디오를 보시려면 로그인하거나 무료 트라이얼을 시작하세요.
Method Article
이 프로토콜의 목적은 기공 복합체의 세포 피질에, GFP - 태그 PATROL1, 막 인신 매매 단백질의 점을 점멸 표시 가변 각도 표면 형광 현미경으로 식물 세포 표면에 형광 표지 된 단백질의 역학을 모니터링하는 방법을 설명하는 것입니다 애기 장대.
A plant’s cell surface is its interface for perceiving environmental cues; it responds with cell biological changes such as membrane trafficking and cytoskeletal rearrangement. Real-time and high-resolution image analysis of such intracellular events will increase the understanding of plant cell biology at the molecular level. Variable angle epifluorescence microscopy (VAEM) is an emerging technique that provides high-quality, time-lapse images of fluorescently-labeled proteins on the plant cell surface. In this article, practical procedures are described for VAEM specimen preparation, adjustment of the VAEM optical system, movie capturing and image analysis. As an example of VAEM observation, representative results are presented on the dynamics of PATROL1. This is a protein essential for stomatal movement, thought to be involved in proton pump delivery to plasma membranes in the stomatal complex of Arabidopsis thaliana. VAEM real-time observation of guard cells and subsidiary cells in A. thaliana cotyledons showed that fluorescently-tagged PATROL1 appeared as dot-like structures on plasma membranes for several seconds and then disappeared. Kymograph analysis of VAEM movie data determined the time distribution of the presence (termed ‘residence time’) of the dot-like structures. The use of VAEM is discussed in the context of this example.
The plant cell surface, including the plasma membrane and its immediately adjacent cytoplasm, is the main region of a plant cell’s perception and integration of biotic and abiotic cues from the extracellular environment. In response to these cues, cell surface components including plasma membrane proteins and the cortical cytoskeleton undergo dynamic changes, on a time scale of seconds to minutes1-4. Thus, real-time and high-resolution imaging of fluorescent proteins on the cell surface can illuminate a plant’s responses to environmental cues at the molecular level.
Confocal laser scanning microscopy is a powerful tool for determination of fluorescently-tagged protein localization3, however, it is often difficult to monitor the real-time protein dynamics because of its relatively long capturing times. An emerging technique for real-time monitoring of proteins in the plant cell is variable angle epifluorescence microscopy (VAEM), which is an adaptation of equipment usually used for total internal reflection fluorescence (TIRF) microscopy. In TIRF microscopy, the fluorescence-excitation light source is an evanescent light field that is generated when the entry angle of the laser is shallow enough to totally internally reflect light at the glass–water interface. The penetration depth of the evanescent light field is around 100 nm. TIRF microscopy is an outstanding tool for single molecule imaging, such as the detection of exocytosis in animal cells5. However, evanescent light cannot reach plasma membranes or the cortical cytoplasm in plant cells, because they have thick cell walls. Recently, TIRF microscopy equipment has been adapted by plant cell biologists, observing that a laser, if angled slightly more deeply than when being used to induce total internal reflection phenomena, could excite the surface of plant cell samples, resulting in high-quality plant cell imaging6,7. The excitation illumination depth is varied by adjusting the entry angle of the laser; therefore, this technique is described as VAEM. This optical system is also called variable angle TIRF microscopy (VA-TIRFM) because there is a possibility that total reflection may take place at the cell wall-periplasm interface7, however, the term VAEM is used in this article, as per the first report in plants6.
The goal of this protocol is to demonstrate practical procedures for using VAEM to visualize fluorescently-tagged protein dynamics on plant cell surfaces. Additionally, an image analysis protocol to quantify the residence time (duration of presence) of molecules is described for VAEM movie analysis. GFP-PATROL1 dot blinking on stomatal complex cells in Arabidopsis thaliana cotyledons is used as an example. PATROL1 was identified by forward genetic approaches as a causal gene of a stomatal response defect mutant in A. thaliana8. PATROL1 is a plant homolog of MUNC-13, which is a priming factor in synapse vesicle exocytosis8. In response to environmental cues, such as light or humidity, it is thought that PATROL1 reversibly regulates the delivery of a proton pump to plasma membranes in the stomatal complex. Stomatal complexes each comprise a pair of guard cells8 and subsidiary cells9, and they require a proton pump for stomatal movement. In these cells, GFP-tagged PATROL1 localizes to dot-like structures that remain on the plasma membrane for less than 1 min9.
모종의 1. 준비
2. 스카이 드롭 떡잎 표본의 설치
주 : VAEM 관찰 용 시료 제조에 중요한 요소는 표본과 커버 유리 사이에 기포의 혼입을 피할 수있다. 거품이 크게 굴절률 차이시킴으로써 VAEM의 화질을 감소시킨다. 우리가 장착 '하늘 드롭'라고 한 간단한 방법은, 거품을 방지하기 위해 사용될 수있다A. 사이 장대 자엽과 커버 유리. 이 관찰 직전에 수행해야합니다.
3. VAEM 관측 및 영화 취득
도립 현미경 TIRF 유닛과 1.49의 개구 수를 가지는 대물 렌즈 TIRF 장착되어 참고 : 다음과 같이, 본 연구에 사용 TIRF 현미경 시스템 (9)에 대하여 설명한다. 레이저 진입 각도의 컴퓨터 제어를 들어, 컨트롤 박스가 사용된다. 녹색 형광 단백질 (GFP)는 488 nm의 광 펌핑 반도체 레이저 및 T와 흥분그 형광은 엽록체에서자가 형광을 방지 5백10부터 5백50까지 nm의 대역 통과 필터로 검출된다. 광 출력 전력의 측정 된 최대 값은 13.0에서 13.5까지 mW였다. 검출을 위해, 전자가 사용된다 (EM-CCD) 카메라 헤드 시스템 및 C 마운트 카메라 배율 변경 단위 전하 결합 소자를 승산.
4. Kymograph 분석 정량 GFP 표지 점 레지던스 시간의 피지 소프트웨어를 사용하여
이 비디오 기사, A에 GFP - PATROL1의 VAEM 관찰을위한 프로토콜에서 장대 떡잎 기공 복잡한 세포가 제공됩니다. 하늘 강하 실장은 A. VAEM 제제의 기포의 발생을 감소시킬 수있는 간단한 제조 방법 장대 자엽 (그림 1). 엔트리 레이저 및 / 또는 VAEM에 대한 표본의 Z-위치의 과도하게 기울 것은 분명 이미지를 제공합니다. 그렇게되면, 그것은 표면 형광 조명에 의해 판...
이 비디오 기사에서는 프로토콜 모니터링 및 애기 장대의 기공 단지에 GFP - PATROL1 점의 동적 거동을 측정하기 위해 제공됩니다. 여기에 도시 된 바와 같이, VAEM 관찰 식물 세포 표면의 라이브 영상을위한 강력한 도구입니다. 고감도 EM-CCD는 VAEM 광학계에 비교적 약한 여기 레이저의 사용을 허용하기 때문에 GFP-PATROL1 모니터링 여기 사용 된 실험 조건 하에서, 비디오 캡쳐의 1 분에 사용 시료 거...
저자는 공개 아무것도 없습니다.
I am grateful to Dr. Masaru Fujimoto for his technical suggestions for VAEM. I am also grateful to Prof. Koh Iba and Dr. Mimi Hashimoto-Sugimoto for providing GFP-PATROL1 transgenic plants, and discussions about PATROL1. I thank Prof. Seiichiro Hasezawa for his continuing support of my work. This work was supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI grant number 25711017.
Name | Company | Catalog Number | Comments |
Inverted microscope | Olympus | IX-73 | |
TIRF unit | Olympus | IX3-RFAEVAW | |
TIRF objective lens | Olympus | UAPON 100 × OTIRF | NA = 1.49 |
Laser angle control box | Chuo Seiki | QT-AK | |
Optically pumped semiconductor laser | Coherent | SapphireTM LP USB 488-20 CDRH Laser | |
510–550 nm band-pass filter | Olympus | U-FBNA | |
EM CCD camera | Hamamatsu Photonics | ImagEM C9100-13 | |
C-mount camera magnification change unit | Olympus | U-TVCAC | |
MetaMorph software | Molecular Devices | MetaMorph version 7.7.11.0 | |
TIRF microscopy manual | Olympus | AX7385 | Instructions: Total Internal Reflection Illumination System (Printed in Japan on August 24, 2012) |
Immersion oil | Olympus | Immersion Oil Typr-F | ne = 1.518 (23 degrees) |
JoVE'article의 텍스트 или 그림을 다시 사용하시려면 허가 살펴보기
허가 살펴보기This article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. 판권 소유