JoVE 비디오를 활용하시려면 도서관을 통한 기관 구독이 필요합니다. 전체 비디오를 보시려면 로그인하거나 무료 트라이얼을 시작하세요.
Method Article
The effect of short-term resistance training on elderly people was investigated through the simultaneous use of several methods. Compared to a control group, many improvements were seen, including on muscle aerobic capacity, glucose tolerance, strength, power, and muscle quality (i.e., protein involved in cell signaling and muscle fiber type composition).
This protocol describes the simultaneous use of a broad span of methods to examine muscle aerobic capacity, glucose tolerance, strength, and power in elderly people performing short-term resistance training (RET). Supervised progressive resistance training for 1 h three times a week over 8 weeks was performed by RET participants (71±1 years, range 65-80). Compared to a control group without training, the RET showed improvements on the measures used to indicate strength, power, glucose tolerance, and several parameters of muscle aerobic capacity. Strength training was performed in a gym with only robust fitness equipment. An isokinetic dynamometer for knee extensor strength permitted the measurement of concentric, eccentric, and static strength, which increased for the RET group (8-12% post- versus pre-test). The power (rate of force development, RFD) at the initial 0-30 ms also showed an increase for the RET group (52%). A glucose tolerance test with frequent blood glucose measurements showed improvements only for the RET group in terms of blood glucose values after 2 h (14%) and the area under the curve (21%). The blood lipid profile also improved (8%). From muscle biopsy samples prepared using histochemistry, the amount of fiber type IIa increased, and a trend towards a decrease in IIx in the RET group reflected a change to a more oxidative profile in terms of fiber composition. Western blot (to determine the protein content related to the signaling for muscle protein synthesis) showed a rise of 69% in both Akt and mTOR in the RET group; this also showed an increase in mitochondrial proteins for OXPHOS complex II and citrate synthase (both ~30%) and for complex IV (90%), in only the RET group. We demonstrate that this type of progressive resistance training offers various improvements (e.g., strength, power, aerobic capacity, glucose tolerance, and plasma lipid profile).
Aging is associated with a loss of muscle mass (sarcopenia), strength, and power. Reduced strength, and probably even more importantly, power, results in immobility, an increased risk of injury, and a reduced quality of life. Resistance training is a well-known strategy to counteract sarcopenia and deteriorating muscle function. A rough estimate of muscle strength can be obtained from the load or number of achieved repetitions. However, this study obtained more detailed and accurate information on muscle function using an isokinetic dynamometer to gather information on the torque during isometric, concentric and eccentric contraction, as well as on the kinetics of force development.
Aerobic capacity, both at the whole-body level (VO2max) and in skeletal muscle, is reduced in elderly people. The decline in heart rate with age explains a large part of the decrease in VO2max1, but reduced muscle oxidative capacity, largely related to reduced physical activity2, does contribute. Impaired mitochondrial function may also be involved in the development of sarcopenia and insulin resistance3. The muscle aerobic capacity was assessed in muscle biopsies through biochemical analyses of the contents of mitochondrial enzymes and protein complexes located both in the matrix (i.e., citrate synthase) and the inner mitochondrial membrane. In addition, histochemical techniques were used to measure the effect of resistance training on muscle morphology (i.e., fiber type composition, fiber cross-sectional area, and capillary density). An alternative method to assess muscle aerobic capacity would be to use magnetic resonance spectroscopy to measure the rate of creatine phosphate resynthesis after exercise-induced depletion4. This method provides an estimate of the in vivo muscle aerobic capacity but cannot discriminate between mitochondrial dysfunction and circulatory disorders. Furthermore, the high costs of equipment limit the use of this technique in most laboratories. Aerobic capacity (VO2max and mitochondrial density) can be improved by endurance exercise in both young and old people5,6. However, the effect of resistance training on these parameters has been less investigated, especially in elderly subjects, and the results are conflicting7,8,9,10.
Type 2 diabetes is a widespread disease in the elderly population. Physical inactivity and obesity are major lifestyle-related factors explaining the increased incidence of type 2 diabetes. Low-intensity aerobic exercise is often recommended to subjects with reduced glucose tolerance. However, it is unclear how strength training in the elderly affects glucose tolerance/insulin sensitivity11,12. The most accurate way to measure insulin sensitivity is to use the glucose clamp technique, where the blood glucose is maintained constant by glucose infusion during conditions of elevated insulin13. The disadvantages with this technique are that it is time consuming and invasive (arterial catheterization) and requires special laboratory facilities. In this study, the oral glucose tolerance test, which is common in healthcare units, was used. This method is suitable when several subjects are to be investigated for a limited period of time.
The testing and timeline of the experimental procedure can be summarized as follows. Use three separate days for testing before and after an eight-week period, with the same arrangement and approximate time schedules (≥24 h between each day, Figure 1). On the first test day, measure: anthropometric data, such as height, body mass, fat-free mass (FFM), and upper leg circumference (i.e., 15 cm above the apex patellae in a relaxed supine position); submaximal cycling ability; and knee muscle strength, as described in steps 4 and 5. Take a muscle biopsy from the thigh on the second test day. For further descriptions, see step 6.1. Test oral glucose tolerance (OGTT) on the last testing day. For further descriptions, see step 7.1. Ask all participants to avoid vigorous physical activity for 24 h and to fast overnight prior to each test day. However, ask them to avoid strenuous physical activity for 48 h before the OGTT test day. Ask them to follow their normal everyday physical activity and diet habits. Note that pre- and post-intervention, both groups' self-reported food intake and type of foods were unchanged.
Figure 1: Experimental protocol. Schematic diagram. The timing between the three pre- and post-tests was similar for each subject and was at least 24 h. Further details are given in the text. This figure has been modified from Frank et al. Scand. J. Med. Sci. Sports. 2016: 26, 764-73.28 Please click here to view a larger version of this figure.
This study sought to investigate the effect of short-term resistance training in elderly people on muscle oxidative capacity and glucose tolerance. The second aim was to examine the effect on strength, power, and muscle qualitative improvements (i.e., proteins involved in cell signaling and muscle fiber type composition).
The Regional Ethics Committee of Stockholm, Sweden, approved the design of the investigation.
1. Material
2. Testing and Training
Note: The eight exercises are standard strength training exercises: seated leg press, seated abdominal crunch, supine chest press, seated back extension, seated shoulder press, seated rowing, seated leg extension (knee extension), and prone leg curl (knee flexion); see Figure 8 in the Representative Results section.
3. Submaximal Cycling Test
Note: Perform the submaximal cycling test on test day 1 (see the Introduction and Figure 1).
4. Knee Extensor Strength: Static, Eccentric, and Concentric Peak Torque and the Rate of Force Development
Note: Perform knee strength measurements on test day 1 (see the Introduction and Figure 1).
5. Muscle Biopsy
Note: Perform a muscle biopsy on test day 2 (see the Introduction and Figure 1).
6. OGTT
Note: Perform OGTT (oral glucose tolerance test) on test day 3 (see the Introduction and Figure 1). The time between the exercise and OGTT must exceed 48 h and should be similar between the pre- and post-tests. A 2-h oral OGTT is used to investigate whether frequent blood samples during this time show normal or increased levels, indicating diabetes or prediabetes conditions.
7. Blood Sample Analysis
8. Analysis of Muscle Samples
Material
In the study, 21 relatively healthy women and men, 65-80 years old and with BMI values between 20 and 30 kg·m-2 participated and were randomized into two groups. Individuals in both groups had relatively low physical activity levels (i.e., a moderate everyday physical activity level and no regular exercise training). One group (n=12, 6 women and 6 men) performed RET under a trainer for 1 h three ti...
In this study, a number of techniques have been used to investigate the effects of short-term progressive resistance training on elderly subjects' muscle function/morphology, aerobic capacity, and glucose tolerance. The main finding was that, compared to a control group, many improvements occurred in muscle aerobic capacity, glucose tolerance, strength, power, and muscle quality (i.e., protein involved in cell signaling and muscle fiber composition). An increase was, for example, seen for: static, eccentric,...
The authors declare that they have no competing financial interests.
The authors are grateful to Andrée Nienkerk, Dennis Peyron, and Sebastian Skjöld for supervising the training sessions and several tests; to the subjects participating; to Tim Crosfield for language revision; and to the economic support from The Swedish School of Sport and Health Sciences.
Name | Company | Catalog Number | Comments |
Western blot | |||
Pierce 660 nm Protein Assay Kit | Thermo Scientific, Rockford, IL, USA | 22662 | |
SuperSignal West Femto Maximum Sensitivity Substrate | Thermo Scientific | 34096 | |
Halt Protease Inhibitor Cocktail (100x) | Thermo Scientific | 78429 | |
Restore PLUS Western Blot Stripping Buffer | Thermo Scientific | 46430 | |
Pierce Reversible Protein Stain Kit for PVDF Membranes | Thermo Scientific | 24585 | |
10 st - 4–20% Criterion TGX Gel, 18 well, 30 µL | Bio-Rad Laboratories, Richmond, CA, USA | 567-1094 | |
Immun-Blot PVDF Membrane | Bio-Rad | 162-0177 | |
Precision Plus Protein Dual Color Standards | Bio-Rad | 161-0374 | |
2x Laemmli Sample Buffer | Bio-Rad | 161-0737 | |
10x Tris/Glycine | Bio-Rad | 161-0771 | |
2-Mercaptoethanol | Bio-Rad | 161-0710 | |
Tween 20 | Bio-Rad | P1379-250ML | |
Band analysis with Quantity One version 4.6.3.software | Bio-Rad | ||
1% phosphatase inhibitor coctail | Sigma-Aldrich, Saint Louis, Missouri, USA | ||
Antibodies | |||
mTOR (1:1,000) | Cell Signaling, Danvers, Massachusetts, USA | 2983 | |
Akt (1:1,000) | Cell Signaling, Danvers | 9272 | |
Secondary anti-rabbit and anti-mouse HRP-linked (1:10,000) | Cell Signaling, Danvers | ||
Citrate synthase (CS) (1:1,000) | Gene tex, San Antonio, California, USA | ||
OXPHOS (1:1,000) | Abcam, Cambridge, UK | ||
Equipment - Analysis of muscle samples | |||
Bullet Blender 1.5 for homogenizing | Next Advance, New York, USA | ||
Plate reader | Tecan infinite F200 pro, Männedorf, Switzerland | ||
Histochemistry | |||
Mayer hematoxylin | HistoLab, Västra Frölunda, Sweden | 1820 | |
Oil Red o | Sigma-Aldrich, Saint Louis, Missouri, USA | 00625-25y | |
NaCl | Sigma-Aldrich | 793566-2.5 kg | |
Cobalt Chloride | Sigma-Aldrich | 60818-50G | |
Amylase | Sigma-Aldrich | A6255-25MG | |
ATP | Sigma-Aldrich | A2383-5G | |
Glycine | VWR-chemicals / VWR-international, Spånga, Sweden | 101196X | |
Calcium Chloride | VWR-chemicals / VWR-international | 22328.262 | |
Iso-pentane | VWR-chemicals / VWR-international | 24872.298 | |
Etanol 96% | VWR-chemicals / VWR-international | 20905.296 | |
NaOH | MERCK, Stockholm, Sweden | 1.06498.1000 | |
Na acetate | MERCK | 1.06268.1000 | |
KCl | MERCK | 1.04936.1000 | |
Ammonium Sulphide | MERCK | U1507042828 | |
Acetic acid 100% | MERCK | 1.00063.2511 | |
Schiffs´ Reagent | MERCK | 1.09033.0500 | |
Periodic acid | MERCK | 1.00524.0025 | |
Chloroform | MERCK | 1.02445.1000 | |
pH-meter LANGE | HACH LANGE GMBH, Dusseldorf, Germany | ||
Light microscope | Olympus BH-2, Olympus, Tokyo, Japan | ||
Cryostat Leica CM1950 | Leica Microsystems, Wetzlar, Germany | ||
Leica software Leica Qwin V3 | Leica Microsystems | ||
Gel Doc 2000 - Bio-Rad, camera setup | Bio-Rad Laboratories AB, Solna, Sweden | ||
Software program Quantift One - 4.6 (version 4.6.3; Bio Rad) | Bio-Rad Laboratories AB, Solna, Sweden | ||
Oral glucos tolerance test, OGTT | |||
Glukos APL 75 g | APL, Stockholm, Sweden | 323,188 | |
Automated analyser Biosen 5140 | EKF Diagnostics, Barleben, Germany | ||
Insulin and C-peptide in plasma kit ELISA | Mercodia AB, Uppsala Sweden | 10-1132-01, 10-1134-01 | |
Plate reader | Tecan infinite F200 pro, Männedorf, Switzerland | ||
Further equipment | |||
Measures of fat-free mass | FFM-Tanita T5896, Tanita, Tokyo, Japan | ||
Strength training equipment for all training exercises | Cybex International Inc., Medway, Massachusetts, USA | ||
Cycle ergometer | Monark Ergometer 893E, Monark Exercises, Varberg, Sweden | ||
Heart rate monitor RS800, Polar | Polar Electro OY, Kampele, Finland | ||
Oxycin-Pro - automatic ergo-spirometric device | Erich Jaeger GmbH, Hoechberg, Germany | ||
Isokinetic dynamometer, Isomed 2000, knee muscle strength | D&R Ferstl GmbH, Henau, Germany | ||
CED 1401 data acquisition system and Signal software | Cambridge Electronic Design, Cambridge, UK | ||
Software for muscle strength analysis, Spike 2, version 7 | Signal Hound, LA Center, WA, USA | ||
Statistica software for statistical analyses | Statistica, Stat soft. inc, Tulsa, Oklahoma, USA | ||
Muscle biopsy equipment | |||
Weil Blakesley conchotome | Wisex, Mölndal, Sweden | ||
Local anesthesia | Carbocain, 20 mL, 20 mg/mL; Astra Zeneca, Södertälje, Sweden | 169,367 | |
Surgical Blade | Feather Safety Razor CO, LTD, Osaka, Japan | 11048030 |
JoVE'article의 텍스트 или 그림을 다시 사용하시려면 허가 살펴보기
허가 살펴보기This article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. 판권 소유