JoVE 비디오를 활용하시려면 도서관을 통한 기관 구독이 필요합니다. 전체 비디오를 보시려면 로그인하거나 무료 트라이얼을 시작하세요.
Method Article
여기에 제시된 것은 낮은 롤오프를 가진 효율적이고 간단한 용액 증착 유기 발광 다이오드의 제조를위한 프로토콜입니다.
열 활성화 지연 형광 (TADF) 개념을 기반으로하는 고효율 유기 이미 터의 사용은 100 % 내부 양자 효율로 인해 흥미 롭습니다. 여기에서는 간단한 장치 구조의 TADF 이미 터를 기반으로 효율적인 유기 발광 다이오드 (OLED)를 제조하기위한 용액 증착 방법이 제시됩니다. 이 빠르고 저렴하며 효율적인 프로세스는 호스트-게스트 개념을 따르는 모든 OLED 발광 레이어에 사용할 수 있습니다. 기본 단계는 추가 복제에 필요한 정보와 함께 설명됩니다. 목표는 현재 연구 및 개발 중인 주요 유기 방출기에 쉽게 적용할 수 있는 일반 프로토콜을 구축하는 것입니다.
일상 생활에서 사용되는 유기 전자 제품의 증가는 탁월한 현실이되었습니다. 여러 유기 전자 응용 프로그램 중에서 OLED가 아마도 가장 매력적일 것입니다. 이미지 품질, 해상도 및 색상 순도로 인해 OLED는 디스플레이의 주요 선택이 되었습니다. 또한 매우 얇고 유연하며 가볍고 쉽게 색상 조정 가능한 OLED에서 넓은 면적 방출을 달성할 수 있는 가능성은 조명에 적용됩니다. 그러나 대 면적 이미 터의 제조 공정과 관련된 일부 기술적 문제로 인해 추가 적용이 연기되었습니다.
낮은 인가 전압에서 작동하는 최초의 OLED1를 통해 외부 양자 효율(EQE)은 낮지만 솔리드 스테이트 조명을 위한 새로운 패러다임이 설계되었습니다. OLED EQE는 방출 된 광자 (빛)와 주입 된 전기 캐리어 (전류)의 비율로 얻어진다. 최대 예상 EQE에 대한 간단한 이론적 추정치는 ηout xη int 2와 같습니다. 내부 효율(ηint)은η int = γ x x ΦPL로 근사할 수 있으며, 여기서 γ는 전하 균형 계수에 해당하고
, ΦPL은 광발광 양자 수율(PLQY)이고, 는 발광 엑시톤(전자 정공 쌍) 생성의 효율이다. 마지막으로,아웃커플링 효율2 η. 아웃커플링을 고려하지 않는 경우 (1) 재료가 방사적으로 재결합하는 엑시톤을 생성하는 데 얼마나 효율적인지, (2) 방사층이 얼마나 효율적인지, (3) 장치 구조가 균형 잡힌전기 시스템을 촉진하는 데 얼마나 효율적인지의 세 가지 주제에 주의를 기울입니다.
순수 형광 유기 방출기는 내부 양자 효율(IQE)이 25%에 불과합니다. 스핀 규칙에 따르면, 삼중 항에서 일중 항 (T→S)으로의 복사 전이는 금지되어 있습니다4. 따라서, 여기 된 전기 캐리어의 75 %는 광자의 방출에 기여하지 않는다5. 이 문제는 유기 이미 터 인광 OLED 6,7,8,9,10에서 전이 금속을 사용하여 처음 극복되었으며, IQE는 100 % 11,12,13,14,15,16에 가까운 것으로 알려졌습니다. . 이것은 유기 화합물과 중전 금속 사이의 스핀 궤도 결합 때문입니다. 이러한 이미 터의 단점은 높은 비용과 열악한 안정성입니다. 최근 Adachi17,18에 의한 여기 된 삼중 항과 단일 항 상태 (∆EST) 사이의 에너지 분리가 낮은 순수한 유기 화합물의 화학적 합성에 대한보고는 새로운 프레임 워크를 야기했습니다. 새로운19는 아니지만 OLED에서 TADF 공정을 성공적으로 채택함으로써 전이 금속 착물을 사용하지 않고도 높은 효율을 얻을 수있었습니다.
이러한 금속이없는 유기 이미 터에서, 삼중 항 상태의 여기 된 캐리어가 일중항 상태로 채워질 가능성이 높다. 따라서 IQE는 100%5,20,21,22의 이론적 한계를 달성할 수 있습니다. 이러한 TADF 재료는 방사적으로 재결합할 수 있는 엑시톤을 제공합니다. 그러나 이러한 이미 터는 호스트-게스트 개념에서 방출 소멸 3,20,21,23,24를 피하기 위해 매트릭스 호스트에 분산이 필요합니다. 부가적으로, 그 효율은 호스트(유기 매트릭스)가 게스트(TADF) 재료(25)에 어떻게 충당되는지에 의존한다. 또한 전기적으로 균형 잡힌 장치 (손실을 피하기 위해 정공과 전자 사이의 평형)를 달성하기 위해 장치 구조 (즉, 얇은 층, 재료 및 두께)를 이상화해야합니다 26. 전기적으로 균형 잡힌 장치를 위한 최상의 호스트-게스트 시스템을 달성하는 것은 EQE를 높이는 데 필수적입니다. TADF 기반 시스템에서는 쉽게 조정할 수없는 EML의 전기 캐리어 모빌리티의 변화로 인해 간단하지 않습니다.
TADF 이미 터를 사용하면 20 %보다 큰 EQE 값은26,27,28,29를 쉽게 얻을 수 있습니다. 그러나 장치 구조는 일반적으로 3-5 개의 유기 층 (정공 수송 / 차단 및 전자 수송 / 차단 층, 각각 HTL / HBL 및 ETL / EBL)으로 구성됩니다. 또한 비용이 높고 기술적으로 복잡하며 거의 디스플레이 응용 분야에만 사용되는 열 증발 공정을 사용하여 제작됩니다. HOMO(가장 높은 점유 분자 궤도) 및 LUMO(가장 낮은 점유되지 않은 분자 궤도) 수준, 캐리어의 전기적 이동성 및 두께에 따라 각 층은 전기 캐리어를 주입, 수송 및 차단하고 발광층(EML)에서 재결합을 보장할 수 있습니다.
장치 복잡성(예: 단순한 2층 구조)을 줄이면 일반적으로 EQE가 눈에 띄게 감소하며 때로는 5% 미만으로 감소합니다. 이것은 EML의 전자 및 정공 이동성이 다르기 때문에 발생하며 장치가 전기적으로 불균형 해집니다. 따라서, 엑시톤 생성의 고효율 대신에, EML에서의 방출 효율은 낮아진다. 더욱이, 높은 인가 전압에서 엑시톤의 고농도 및 긴 여기 수명(24,30,31)으로 인해 밝기가 증가함에 따라 EQE의 강한 감소와 함께 눈에 띄는 롤오프가 발생합니다. 이러한 문제를 극복하려면 발광층의 전기적 특성을 조작할 수 있는 강력한 기능이 필요합니다. 용액-증착 방법을 사용하는 간단한 OLED 아키텍처의 경우, EML의 전기적 특성은 용액 준비 및 증착 파라미터(32)에 의해 튜닝될 수 있다.
유기 기반 장치에 대한 용액 증착 방법은 이전에 사용되었습니다31. OLED 제조는 열 증발 공정에 비해 단순화 된 구조, 저렴한 비용 및 넓은 면적 생산으로 인해 큰 관심을 끌고 있습니다. 전이 금속 착물 OLEDs에서 높은 성공을 거두면서 주요 목표는 방출 면적을 늘리지 만 장치 구조를 가능한 한 단순하게 유지하는 것입니다33. 롤투롤(R2R)34,35,36, 잉크젯 프린팅(37,38,39) 및 슬롯-다이(40)와 같은 방법은 OLED의 다층 제조에 성공적으로 적용되었으며, 이는 가능한 산업적 접근이다.
유기층에 대한 용액 증착 방법이 장치 아키텍처 단순화를 위한 좋은 선택임에도 불구하고, 원하는 모든 물질이 쉽게 증착될 수 있는 것은 아니다. 두 가지 유형의 재료가 사용됩니다 : 작은 분자와 폴리머. 용액 증착 방법에서, 작은 분자는 불량한 박막 균일 성, 결정화 및 안정성과 같은 몇 가지 단점을 갖는다. 따라서, 폴리머는 표면 거칠기가 낮고 크고 유연한 기판 상에 균일 한 박막을 형성 할 수 있기 때문에 주로 사용된다. 또한, 재료는 적절한 용매 (주로 클로로포름, 클로로 벤젠, 디클로로 벤젠 등과 같은 유기 용매), 물 또는 알코올 유도체에 대한 용해도가 좋아야합니다.
용해도의 문제 외에도, 한 층에 사용 된 용매가 선행 층에 대한 용매로서 작용해서는 안된다는 것을 보장 할 필요가있다. 이것은 습식 공정에 의해 증착 된 다층 구조를 허용합니다. 그러나 제한사항이 있습니다 41. 가장 일반적인 장치 구조는 일부 용액 증착 층(즉, 발광 층)과 하나의 열 증발층(ETL)을 사용합니다. 또한, 박막 균질성 및 형태는 증착 방법 및 파라미터에 크게 의존한다. 이 층을 통한 전하 수송은 이러한 형태에 의해 완전히 좌우됩니다. 그럼에도 불구하고 원하는 최종 장치와 제조 공정의 호환성 간의 절충안을 신중하게 설정해야 합니다. 증착 매개 변수를 조정하는 것은 시간이 많이 걸리는 작업 임에도 불구하고 성공의 열쇠입니다. 예를 들어, 스핀 코팅은 간단한 기술이 아닙니다. 간단해 보이지만 회전하는 기판 위에 있는 용액에서 박막을 형성하는 몇 가지 측면이 주의해야 합니다.
필름 두께 최적화, 회전 속도 및 시간 조작 (두께는 두 매개 변수의 기하 급수적 인 감쇠) 외에도 실험자의 동작도 조정하여 좋은 결과를 얻어야합니다. 올바른 파라미터는 또한 용액 점도, 증착 면적 및 기판 상의 용액의 습윤성/접촉각에 따라 달라집니다. 고유한 매개 변수 집합은 없습니다. 용액/기질에 대한 특정 조정이 있는 기본 가정만이 원하는 결과를 산출합니다. 또한, 층 분자 형태 및 형태에 의존하는 전기적 특성은 여기에 설명된 프로토콜에 따라 원하는 결과를 위해 최적화될 수 있습니다. 완료되면 프로세스가 간단하고 실현 가능합니다.
그럼에도 불구하고 장치 구조 복잡성을 줄이면 최대 EQE가 감소합니다. 그러나 효율성 대 밝기 측면에서 타협을 달성할 수 있습니다. 이러한 타협은 실용적인 적용을 가능하게하기 때문에 간단하고 넓은 면적과 호환되며 저렴한 프로세스의 잉여가 현실이 될 수 있습니다. 이 문서에서는 이러한 요구 사항과 필요한 문제를 처리하기 위한 레시피를 개발하는 방법에 대해 설명합니다.
이 프로토콜은 녹색 TADF 이미 터 2PXZ-OXD [2,5- 비스 (4- (10H- 페녹 사진 -10- 일) 페닐) -1,3,4- 옥사 디아 졸] 42 에 초점을 맞추고 있으며, 이는 EML에 해당하는 PVK [폴리 (N- 비닐 카바 졸)] 및 OXD-7 [1,3- 비스 [2- (4- 3- 차 부틸 페닐) -1,3,4- 옥사 디아 조 -5- 일] 벤젠]으로 구성된 호스트 매트릭스의 게스트입니다. TmPyPb [1,3,5- 트리 (m- 피리딘 -3- 일 페닐) 벤젠]의 전자 수송층 (ETL)이 사용된다. 양극과 음극의 작업 기능이 모두 최적화됩니다. 양극은 높은 전도성 중합체 pedot를 가진 ITO (인듐 주석 산화물)로 구성됩니다 : PSS [폴리 (3,4- 에틸렌 디옥시 티오 펜) - 폴리 (스티렌 술포 네이트)], 음극은 알루미늄과 LiF (리튬 플루오 라이드)의 이중층으로 구성됩니다.
마지막으로, pedot : PSS 및 EML (PVK : OXD-7 : 2PXZ-OXD)은 스핀 코팅에 의해 증착되는 반면, TmPyPb, LiF 및 Al은 열적으로 증발됩니다. pedot:PSS의 전도성 금속과 유사한 특성을 고려할 때 이 장치는 가능한 가장 간단한 구조의 전형적인 "2개의 유기층"입니다. EML에서, TADF 게스트 (10% 중량)는 PVK0.6+OXD-70.4로 구성된 호스트 (90% 중량)에 분산된다.
Access restricted. Please log in or start a trial to view this content.
주의 : 다음 단계에는 다른 용매 및 유기 물질의 사용이 포함되므로 취급시 적절한주의를 기울여야합니다. 흄 후드와 실험실 안경, 안면 마스크, 장갑 및 실험실 코트와 같은 보호 장비를 사용하십시오. 재료의 계량은 고정밀 스케일 기계를 사용하여 정밀하게 수행되어야 합니다. 기판의 청결, 박막의 용액 증착 및 증발을 보장하기 위해 모든 절차는 통제 된 환경 또는 글로브 박스에서 수행하는 것이 좋습니다. 스핀 코터, 마이크로 피펫, 열 증발기, 유기 물질 및 용매를 사용하기 전에 모든 안전 데이터 시트를 참조해야합니다.
1. 호스트-게스트 솔루션 준비
2. 기판 청소
알림: 기판을 다루려면 모서리만 만지는 핀셋을 사용하십시오(기판 중앙을 만지지 마십시오). 여기에 사용된 기판에는 6개의 사전 패턴화된 ITO 픽셀이 있습니다(그림 1A).
3. 스핀 코팅
이것은 이 프로토콜의 가장 중요한 단계입니다. 균일성, 균질성 및 박막에 핀홀이 없음을 보장하려면 모든 용매를 해당 여과지로 여과해야 합니다. 최종 장치에서 단락을 피하기 위해 기판에서 과도한 용매를 완전히 제거해야합니다. 여기에 사용 된 기판의 경우 패턴 화 된 ITO 및 음극에서 과도한 재료를 제거하는 것도 최종 픽셀을 고정하는 데 중요하며 픽셀의 활성 영역을 방해하지 않고 고정밀로 수행해야합니다. 박막의 스핀 코팅을 위해 아래에 설명 된 단계를 따라야합니다. 박막의 최종 두께는 여기에 사용된 것과 다른 스핀 코터를 사용하는 경우 달라질 것입니다.
4. 재료의 증발
알림: 더 나은 증발을 위해 필요한 최소 진공은 일반적으로 5 x 10-5 mbar보다 낮은 압력입니다. 모든 유기 물질의 경우 증발 속도를 2 Å / s 미만으로 유지하여 층의 거칠기와 균일 성을 줄여야합니다. LiF의 경우 증발 속도는 0.2 Å / s 미만이어야합니다. 이를 준수하지 않으면 불균일 한 배출이 발생할 수 있습니다. 아직 프로그래밍하지 않은 경우 압전 센서 시스템(증착 두께 및 증발 속도 측정)을 1) 재료 밀도, 2) Z 계수: 센서에 대한 재료의 음향 결합, 3) 툴링 계수: 증발 도가니 대 시료 홀더의 기하학적 보정과 같은 필수 매개변수로 프로그래밍합니다. 증발기를 사용하기 전에 이러한 교정을 수행하는 방법에 대한 장비 사양을 참조하고 특정 재료의 밀도 및 Z 계수 값에 대해서는 재료 데이터 시트를 참조하십시오. 일단 프로그래밍되고 증발 챔버 형상 변경(툴링 팩터) 없이 데이터를 저장하여 나중에 동일한 재료에 사용할 수 있습니다.
5. 장치 특성화
알림: 최종 장치를 특성화하려면 고감도 전압 측정기, 휘도 측정기 및 분광계를 사용하십시오. 적분구가 있으면 사용하십시오. 그렇지 않으면 휘도 측정기를 제조업체가 표시하고 초점 렌즈에 따라 떨어진 거리에 OLED 표면 방출에 수직으로 놓습니다. 적분구를 사용하지 않는 경우, OLED 디바이스 방출은 효율 계산을 위해 램버트 프로파일을 따르는 것으로 가정할 수 있다. 여기서, 플롯 된 밝기는 적분 구 하에서 측정 된 것과 일치하지 않습니다 (따라서 적어도 π 배 더 적을 것입니다).
Access restricted. Please log in or start a trial to view this content.
그림 5 는 제작된 장치의 주요 결과를 보여줍니다. 켜기 전압은 매우 낮았으며 (~ 3V), 이는 2 개의 유기층 장치에서 흥미로운 결과입니다. 최대 밝기는 적분구를 사용하지 않고 약 8,000cd/m2 였습니다. ηc, ηp 및 EQE의 최대값은 각각 약 16cd/A, 10lm/W 및 8%였습니다. 결과가 이 TADF 이미터에 대한 최고의 성능 수치는 아니지만 솔루션 프로세스 방법을 통해 이 ?...
Access restricted. Please log in or start a trial to view this content.
간단한 장치 구조에서 효율적인 OLED를 제조하기 위해 여기에 사용되는 프로토콜은 비교적 간단합니다. 전기적 이동성은 장치 층의 재료 구성에 의해 변조 될뿐만 아니라 필름 형태에 따라 크게 달라집니다. 용액의 준비와 용매 및 농도의 적절한 선택이 중요합니다. 물질 응집이 발생할 수 없으므로 나노 미터 규모에서 완전한 용해도를 의미합니다. 용액의 점도를 관찰하는 것도 중요합니다. 점도?...
Access restricted. Please log in or start a trial to view this content.
저자는 공개 할 것이 없습니다.
저자는 Marie Sklodowska-Curie 보조금 계약 번호 674990에 따라 유럽 연합의 Horizon 2020 연구 및 혁신 프로그램의 "EXCILIGHT" 프로젝트를 인정하고자 합니다. 이 작업은 또한 FCT / MEC를 통해 국가 기금으로 자금을 조달하는 i3N, UIDB / 50025/2020 및 UIDP / 50025 / 2020 프로젝트의 범위 내에서 개발되었습니다.
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
2PXZ-OXD (2,5-bis(4-(10H-phenoxazin-10-yl)phenyl)-1,3,4-oxadiazole) | Lumtec ltd | 1447998-13-1 | |
Aluminum (99.999%) | Alfa Aesar | 7429-90-5 | |
Acetone (99.9%) | Sigma Aldrich | 67-64-1 | |
Hellmanex | Ossila | 7778-53-2 | |
Isopropyl alcohol | Sigma Aldrich | 67-63-0 | |
ITO patterned substrates | Ossila | 65997-17-3 | |
Lithium Fluoride (99.99%) | Sigma Aldrich | 7789-24-4 | |
OXD-7 (1,3-Bis[2-(4-tert-butylphenyl)-1,3,4-oxadiazo-5-yl]benzene) | Ossila | 138372-67-5 | |
PEDOT: PSS (Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate) | Ossila | 155090-83-8 | |
PVK (Polyvinlycarbazole) (average Mn 25,000-50,000) | Sigma Aldrich | 25067-59-8 | |
TmPyPb (1,3,5-Tri(m-pyridin-3-ylphenyl)benzene) | Ossila | 138372-67-5 |
Access restricted. Please log in or start a trial to view this content.
JoVE'article의 텍스트 или 그림을 다시 사용하시려면 허가 살펴보기
허가 살펴보기This article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. 판권 소유