A subscription to JoVE is required to view this content.
Atomic fluorescence spectroscopy (AFS) is an analytical technique that involves the electronic transitions of atoms in a flame, furnace, or plasma being excited by electromagnetic (EM) radiation. When these atoms absorb energy, they become excited and subsequently release energy as they return to their original state. This emitted light, or "fluorescence," is observed at a right angle to the incident beam. Both absorption and emission processes transpire at distinct wavelengths, which are characteristic of the specific atomic species present. AFS is particularly useful for determining mercury (Hg) and other elements that form volatile hydrides, such as arsenic (As) and selenium (Se).
The instrumentation required for atomic fluorescence measurements includes a high-intensity light source, an atomizer, a wavelength selector, and a detector. While a continuum source would be desirable, it is rarely used due to its low power output. Instead, pulsed hollow-cathode lamps, electrodeless-discharge lamps, xenon or mercury arc lamps, and lasers serve as potential light sources.
The fluorescence signal intensity is proportional to the target element's concentration and irradiation intensity, making high-intensity sources and minimal interfering radiation essential. Various chemicals, such as releasing and protective agents, can be introduced into the matrix to minimize chemical and spectral interferences that arise during atomization.
From Chapter 14:
Now Playing
Atomic Spectroscopy
193 Views
Atomic Spectroscopy
638 Views
Atomic Spectroscopy
231 Views
Atomic Spectroscopy
476 Views
Atomic Spectroscopy
408 Views
Atomic Spectroscopy
263 Views
Atomic Spectroscopy
296 Views
Atomic Spectroscopy
478 Views
Atomic Spectroscopy
249 Views
Atomic Spectroscopy
521 Views
Atomic Spectroscopy
259 Views
Atomic Spectroscopy
112 Views
Atomic Spectroscopy
405 Views
Atomic Spectroscopy
146 Views
Atomic Spectroscopy
123 Views
See More
Copyright © 2025 MyJoVE Corporation. All rights reserved
We use cookies to enhance your experience on our website.
By continuing to use our website or clicking “Continue”, you are agreeing to accept our cookies.