JoVE Logo

로그인

JoVE 비디오를 활용하시려면 도서관을 통한 기관 구독이 필요합니다.

MicroRNA-Mediated Inhibition of Excitatory Postsynaptic Currents in Mouse Hippocampal Slices

-- views • 1:30 min

내레이션 대본

Take mouse hippocampal brain slices containing CA3 neurons infected with a recombinant viral vector.

The viral genome expresses a light-activated channel tagged with a fluorescent reporter and a microRNA that downregulates the expression of voltage-gated calcium channels.

Place a slice in a recording chamber under dark conditions. Using a microscope, identify the fluorescent CA3 neurons.

Patch a recording electrode onto a CA1 neuron that receives input from infected CA3 neurons. Rupture the membrane to record intracellular ionic currents.

Apply an inhibitor to block inhibitory neurotransmitter receptors, allowing only excitatory signals.

Using light pulses, stimulate the light-activated channels in the infected CA3 neurons, generating action potentials.

In uninfected mice, the action potential activates voltage-gated calcium channels, causing a calcium ion influx that triggers neurotransmitter release. The neurotransmitters trigger excitatory postsynaptic currents, or EPSCs, in the CA1 neurons.

In infected mice, the microRNA-mediated reduction of voltage-gated calcium channels results in EPSC inhibition.

article

02:58

MicroRNA-Mediated Inhibition of Excitatory Postsynaptic Currents in Mouse Hippocampal Slices

관련 동영상

31 Views

JoVE Logo

개인 정보 보호

이용 약관

정책

연구

교육

JoVE 소개

Copyright © 2025 MyJoVE Corporation. 판권 소유