Zaloguj się

Cells pull particles inward and engulf them in spherical vesicles in an energy-requiring process called endocytosis. Phagocytosis (“cellular eating”) is one of three major types of endocytosis. Cells use phagocytosis to take in large objects—such as other cells (or their debris), bacteria, and even viruses.

The objective of phagocytosis is often destruction. Cells use phagocytosis to eliminate unwelcome visitors, like pathogens (e.g., viruses and bacteria). It is perhaps unsurprising, that many immune system cells, including neutrophils, macrophages, and monocytes, leverage phagocytosis to destroy pathogens or infected host cells. In addition to immune system cells, amoebae, algae, and other single-celled organisms use phagocytosis to eat.

Phagocytosis begins when a particle (e.g., virus) contacts the engulfing cell, called a phagocyte. Sometimes, this is a chance encounter. Other times, the phagocyte follows a chemical signal to the particle, in a process called chemotaxis. The phagocyte eventually binds to the particle or cell via surface receptors. Different types of phagocytes use distinct receptors for phagocytosis. These receptors may be general, responding to a variety of stimuli, or specific.

The phagocyte begins to surround and engulf the particle bound to its surface by extending regions of its cytoplasm, called pseudopods, around the particle. The pseudopods continue to surround the particle until it is completely enveloped and pinched off into the cytoplasm. Together, the particle and enveloping vesicle form a phagosome.

The phagosome then fuses with a lysosome, forming a phagolysosome. The lysosome is a spherical cytoplasmic organelle that processes cellular waste in a highly acidic milieu. The fusion of the phagosome and lysosome brings the engulfed particles in contact with the degradative enzymes that neutralize or eliminate the particles. Eventually, the phagolysosome forms a waste-containing residual body that is released from the cell.

Tagi
PhagocytosisEndocytosisCell EatingPseudopodVacuoleLysosomeEnzymesSpherical VesiclesEnergy requiring ProcessLarge ObjectsDestructionPathogensImmune System CellsNeutrophilsMacrophagesMonocytesAmoebaeAlgae

Z rozdziału 5:

article

Now Playing

5.15 : Phagocytosis

Membranes and Cellular Transport

72.0K Wyświetleń

article

5.1 : Co to są membrany?

Membranes and Cellular Transport

145.9K Wyświetleń

article

5.2 : Płynność membrany

Membranes and Cellular Transport

148.6K Wyświetleń

article

5.3 : Model płynnej mozaiki

Membranes and Cellular Transport

137.8K Wyświetleń

article

5.4 : Co to jest gradient elektrochemiczny?

Membranes and Cellular Transport

107.9K Wyświetleń

article

5.5 : Dyfuzja

Membranes and Cellular Transport

182.5K Wyświetleń

article

5.6 : Osmoza

Membranes and Cellular Transport

154.8K Wyświetleń

article

5.7 : Toniczność u zwierząt

Membranes and Cellular Transport

115.5K Wyświetleń

article

5.8 : Toniczność w roślinach

Membranes and Cellular Transport

52.6K Wyświetleń

article

5.9 : Wprowadzenie do białek błonowych

Membranes and Cellular Transport

65.3K Wyświetleń

article

5.10 : Ułatwiony transport

Membranes and Cellular Transport

122.3K Wyświetleń

article

5.11 : Podstawowy transport aktywny

Membranes and Cellular Transport

172.0K Wyświetleń

article

5.12 : Drugorzędny transport aktywny

Membranes and Cellular Transport

116.2K Wyświetleń

article

5.13 : Endocytoza zależna od receptorów

Membranes and Cellular Transport

103.0K Wyświetleń

article

5.14 : Pinocytoza

Membranes and Cellular Transport

64.8K Wyświetleń

See More

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone