JoVE Logo

Zaloguj się

8.5 : The Citric Acid Cycle

The citric acid cycle, also known as the Krebs cycle or TCA cycle, consists of several energy-generating reactions that yield one ATP molecule, three NADH molecules, one FADH2 molecule, and two CO2 molecules.

Acetyl CoA is the point-of-entry into the citric acid cycle, which occurs in the inner membrane (i.e., matrix) of mitochondria in eukaryotic cells or the cytoplasm of prokaryotic cells. Prior to the citric acid cycle, pyruvate oxidation produced two acetyl CoA molecules per glucose molecule. Hence, the citric acid cycle runs twice per glucose molecule.

The citric acid cycle can be partitioned into eight steps, each yielding different molecules (italicized below).

With the help of catalyzing enzymes, one acetyl CoA (2-carbon) reacts with oxaloacetic acid (4-carbon), forming the 6-carbon molecule citrate.

Next, citrate is converted into one of its isomers, isocitrate, through a two-part process in which water is removed and added.

The third step yields α-ketoglutarate (5-carbon) from oxidized isocitrate. This process releases CO2 and reduces NAD+ to NADH.

The fourth step forms the unstable compound succinyl CoA from α-ketoglutarate, a process that also releases CO2 and reduces NAD+ to NADH.

The fifth step produces succinate (4-carbon) after a phosphate group replaces the CoA group of succinyl CoA. This phosphate group is passed on to ADP (or GDP) to form ATP (or GTP).

The sixth step forms fumarate (4-carbon) from the oxidation of succinate. This reaction reduces FAD to FADH2.

The seventh step, in which water is added to fumarate, generates malate (4-carbon).

The final step produces oxaloacetate, the compound that reacts with acetyl CoA in step one, from the oxidation of malate. In the process, NAD+ is reduced to NADH.

The NADH and FADH2 produced in the citric acid cycle provide electrons in the electron transport chain and, hence, aid the production of additional ATP.

Tagi

Citric Acid CycleMitochondrial MatrixRedox ReactionsDehydration ReactionsHydration ReactionsDecarboxylation ReactionsKrebs CycleGlucose CatabolismAcetyl CoAOxaloacetateCitrateIsocitrateNADNADHAlpha ketoglutarateCarbon DioxideSuccinyl CoAPhosphate GroupGDPSuccinateGTPATP Production

Z rozdziału 8:

article

Now Playing

8.5 : The Citric Acid Cycle

Cellular Respiration

150.7K Wyświetleń

article

8.1 : Co to jest glikoliza?

Cellular Respiration

163.6K Wyświetleń

article

8.2 : Energochłonne etapy glikolizy

Cellular Respiration

162.9K Wyświetleń

article

8.3 : Etapy glikolizy uwalniające energię

Cellular Respiration

138.5K Wyświetleń

article

8.4 : Utlenianie pirogronianu

Cellular Respiration

158.2K Wyświetleń

article

8.6 : Łańcuchy transportu elektronów

Cellular Respiration

97.0K Wyświetleń

article

8.7 : Chemiosmoza

Cellular Respiration

96.8K Wyświetleń

article

8.8 : Nośniki elektronów

Cellular Respiration

84.0K Wyświetleń

article

8.9 : Fermentacja

Cellular Respiration

113.2K Wyświetleń

article

8.10 : Powiązania dietetyczne

Cellular Respiration

49.9K Wyświetleń

article

8.11 : Wprowadzenie do oddychania komórkowego

Cellular Respiration

172.6K Wyświetleń

article

8.12 : Produkty cyklu kwasu cytrynowego

Cellular Respiration

98.2K Wyświetleń

article

8.13 : Wyniki glikolizy

Cellular Respiration

98.6K Wyświetleń

article

8.14 : Wydajność ATP

Cellular Respiration

68.5K Wyświetleń

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone