Zaloguj się

The human X chromosome contains over ten times the number of genes as in the Y chromosome. Since males have only one X chromosome, and females have two, one might expect females to produce twice as many of the proteins, with undesirable results.

Instead, in order to avoid this potential issue, female mammalian cells inactivate nearly all the genes in one of their X chromosomes during early embryonic development. In the nuclear envelope surrounding the cell nucleus, the inactivated X chromosome condenses into a small, dense ball called a Barr body. In this state, most of the X-linked genes are not accessible to transcription.

In placental mammals, the inactivated X chromosome—maternal or paternal⁠—is randomly determined (marsupials, however, preferentially inactivate the paternal X chromosome). X inactivation in one cell is also independent of X inactivation in other cells. Thus, about half the embryonic cells inactivate the maternal X copy; the remaining half inactivate the paternal copy, producing a mosaic. When these cells replicate, they produce cells with the same X chromosome inactivated. Notably, Barr bodies get reactivated in cells within the ovaries that become eggs.

X inactivation accounts for the appearance of female tortoiseshell and calico cats. These cats are heterozygous for a gene with alleles for black fur and orange fur located on the X chromosome. Their mottled coats result from random inactivation of the black and orange fur alleles in groups of cells (calico cats also have white fur patches that are caused by a different chromosome). While male tortoiseshell and calico cats exist, they have an extra X chromosome and are generally infertile.

X inactivation reduces the severity of conditions caused by extra X chromosomes. Males with Klinefelter syndrome form Barr bodies to inactivate their extra X chromosome. Females with Triple X syndrome form additional Barr bodies for their excess X chromosome or chromosomes.

Tagi

X inactivationMultiple CopiesChromosomeGenetic CompensationEarly DevelopmentXCISilenced GenesBarr BodyTranscriptionX Inactivation CenterXISTTSIXRegulatory SequencesActivatorsRNA MoleculesProtein PartnersDNA ReshapingBarr Body StabilityMitotic Cell DivisionCalico Cats

Z rozdziału 12:

article

Now Playing

12.16 : X-Inactivation

Classical and Modern Genetics

37.6K Wyświetleń

article

12.1 : Żargon genetyczny

Classical and Modern Genetics

96.4K Wyświetleń

article

12.2 : Kwadraty Punneta

Classical and Modern Genetics

106.4K Wyświetleń

article

12.3 : Krzyżówki monohybrydowe

Classical and Modern Genetics

224.4K Wyświetleń

article

12.4 : Krzyże dihybrydowe

Classical and Modern Genetics

69.7K Wyświetleń

article

12.5 : Analiza rodowodowa

Classical and Modern Genetics

80.1K Wyświetleń

article

12.6 : Prawa prawdopodobieństwa

Classical and Modern Genetics

36.2K Wyświetleń

article

12.7 : Cechy wielu alleli

Classical and Modern Genetics

33.6K Wyświetleń

article

12.8 : Cechy poligeniczne

Classical and Modern Genetics

63.8K Wyświetleń

article

12.9 : Epistaza

Classical and Modern Genetics

42.0K Wyświetleń

article

12.10 : Plejotropia

Classical and Modern Genetics

36.2K Wyświetleń

article

12.11 : Natura i wychowanie

Classical and Modern Genetics

20.2K Wyświetleń

article

12.12 : Prawo segregacji

Classical and Modern Genetics

59.9K Wyświetleń

article

12.13 : Prawo niezależnego asortymentu

Classical and Modern Genetics

50.2K Wyświetleń

article

12.14 : Cechy sprzężone z chromosomem X

Classical and Modern Genetics

49.6K Wyświetleń

See More

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone