Zaloguj się

Overview

Ethers can be prepared from organic compounds by various methods. Some of them are discussed below,

Preparation of Ethers by Alcohol Dehydration

In this method, in the presence of protic acids, alcohol dehydrates to produce alkenes and ethers under different conditions. For example, in the presence of sulphuric acid, dehydration of ethanol at 413 K yields ethoxyethane, whereas it yields ethene at 443 K.

Figure1

This method is a nucleophilic substitution reaction. The two alcohol molecules involved in the reaction play two roles—one alcohol molecule acts as a substrate while the other acts as a nucleophile. The reaction follows an SN2 mechanism. The dehydration of secondary and tertiary alcohols to get corresponding ethers is unsuccessful as alkenes are formed easily in these reactions.

Preparation of Ethers by Williamson Ether Synthesis

It is the most versatile method for the preparation of asymmetrical ethers in laboratories. In this method, initially, the alcohol is deprotonated to form an alkoxide ion. Further, the alkoxide ion functions as a nucleophile and attacks an alkyl halide, leading to the formation of ether. The reaction generally follows the SN2 mechanism for primary alcohol.

Figure2

Williamson synthesis exhibits higher productivity when the halide to be displaced is on a methyl or a primary carbon. In the case of secondary alkyl halides, elimination competes with substitution, whereas the formation of elimination products is the only case in tertiary alkyl halides.

Tagi

EthersAlcoholsAlcohol DehydrationWilliamson Ether SynthesisProtic AcidsSulphuric AcidEthoxyethaneEtheneNucleophilic Substitution ReactionSN2 MechanismSecondary AlcoholsTertiary AlcoholsAlkenesAlkoxide IonAlkyl HalideAsymmetrical EthersLaboratoriesDeprotonatedHigher Productivity

Z rozdziału 11:

article

Now Playing

11.3 : Ethers from Alcohols: Alcohol Dehydration and Williamson Ether Synthesis

Ethers, Epoxides, Sulfides

9.9K Wyświetleń

article

11.1 : Struktura i nomenklatura eterów

Ethers, Epoxides, Sulfides

10.8K Wyświetleń

article

11.2 : Właściwości fizyczne eterów

Ethers, Epoxides, Sulfides

6.8K Wyświetleń

article

11.4 : Etery z alkenów: dodatek alkoholu i alkoksymerkuracja-odmerkurowanie

Ethers, Epoxides, Sulfides

7.6K Wyświetleń

article

11.5 : Etery do halogenków alkilowych: rozszczepienie kwasowe

Ethers, Epoxides, Sulfides

5.5K Wyświetleń

article

11.6 : Autooksydacja eterów do nadtlenków i wodoronadtlenków

Ethers, Epoxides, Sulfides

7.1K Wyświetleń

article

11.7 : Etery koronowe

Ethers, Epoxides, Sulfides

5.0K Wyświetleń

article

11.8 : Struktura i nazewnictwo epoksydów

Ethers, Epoxides, Sulfides

6.2K Wyświetleń

article

11.9 : Przygotowanie epoksydów

Ethers, Epoxides, Sulfides

7.2K Wyświetleń

article

11.10 : Epoksydowanie bez ostrości

Ethers, Epoxides, Sulfides

3.7K Wyświetleń

article

11.11 : Katalizowane kwasem otwieranie pierścieni epoksydów

Ethers, Epoxides, Sulfides

6.9K Wyświetleń

article

11.12 : Katalizowane zasadą otwieranie pierścieni epoksydów

Ethers, Epoxides, Sulfides

8.1K Wyświetleń

article

11.13 : Struktura i nomenklatura tioli i siarczków

Ethers, Epoxides, Sulfides

4.5K Wyświetleń

article

11.14 : Przygotowanie i reakcje tioli

Ethers, Epoxides, Sulfides

5.8K Wyświetleń

article

11.15 : Otrzymywanie i reakcje siarczków

Ethers, Epoxides, Sulfides

4.6K Wyświetleń

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone