Zaloguj się

Velocity and position can be calculated from the known function of acceleration as a function of time. The total area under the acceleration-time graph and the velocity-time graph gives the change in velocity and position, respectively. In the case of an airplane, its acceleration is tracked using the inertial navigation system. The pilot provides the input of the airplane's initial position and velocity before takeoff. The inertial navigation system then uses the acceleration data to calculate the airplane's position and velocity throughout the flight.

For non-constant acceleration, the area under the acceleration-time curve is split into smaller rectangles, where the width is Δt, and the height is average acceleration. The quantity Δt multiplied by average acceleration is the change in velocity. Thus, the sum of the areas of the rectangles gives the total change in velocity from t1 to t2. When Δt approaches zero, the average acceleration approaches instantaneous acceleration, and the sum can be replaced with an integral. The area is then represented as the integral of instantaneous acceleration. Similarly, the displacement can be calculated from the area under the velocity-time curve.

Consider another example. A cyclist sprints at the end of a race to clinch a victory. They have an initial velocity of 11.5 m/s, and accelerate at a rate of 0.500 m/s2 for 7.00 s. What is their final velocity?

The known quantities are initial velocity (11.5 m/s), acceleration (0.500 m/s2), and time (7.00 s). The product of acceleration and time is equal to the difference between final and initial velocity. Using the values of initial velocity, acceleration, and time, the final velocity is calculated to be 15.0 m/s.

This text is adapted from Openstax, University Physics Volume 1, Section 3.6: Finding Velocity and Displacement from Acceleration.

Tagi
Keyword Extraction VelocityPositionAccelerationGraphical MethodInertial Navigation SystemAirplaneAcceleration time GraphVelocity time GraphChange In VelocityChange In PositionInstantaneous AccelerationDisplacementCyclistSprintFinal Velocity

Z rozdziału 3:

article

Now Playing

3.13 : Velocity and Position by Graphical Method

Motion Along a Straight Line

7.0K Wyświetleń

article

3.1 : Położenie i przemieszczenie

Motion Along a Straight Line

16.9K Wyświetleń

article

3.2 : Średnia prędkość

Motion Along a Straight Line

17.8K Wyświetleń

article

3.3 : Prędkość chwilowa - I

Motion Along a Straight Line

12.1K Wyświetleń

article

3.4 : Prędkość chwilowa - II

Motion Along a Straight Line

8.9K Wyświetleń

article

3.5 : Średnie przyspieszenie

Motion Along a Straight Line

9.2K Wyświetleń

article

3.6 : Natychmiastowe przyspieszenie

Motion Along a Straight Line

7.4K Wyświetleń

article

3.7 : Równania kinematyczne - I

Motion Along a Straight Line

10.1K Wyświetleń

article

3.8 : Równania kinematyczne - II

Motion Along a Straight Line

9.1K Wyświetleń

article

3.9 : Równania kinematyczne - III

Motion Along a Straight Line

7.3K Wyświetleń

article

3.10 : Równania kinematyczne: rozwiązywanie problemów

Motion Along a Straight Line

11.7K Wyświetleń

article

3.11 : Ciała swobodnie spadające: Wprowadzenie

Motion Along a Straight Line

7.7K Wyświetleń

article

3.12 : Ciała swobodnie spadające: Przykład

Motion Along a Straight Line

15.3K Wyświetleń

article

3.14 : Prędkość i położenie metodą całkową

Motion Along a Straight Line

5.8K Wyświetleń

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone