JoVE Logo

S'identifier

3.13 : Velocity and Position by Graphical Method

Velocity and position can be calculated from the known function of acceleration as a function of time. The total area under the acceleration-time graph and the velocity-time graph gives the change in velocity and position, respectively. In the case of an airplane, its acceleration is tracked using the inertial navigation system. The pilot provides the input of the airplane's initial position and velocity before takeoff. The inertial navigation system then uses the acceleration data to calculate the airplane's position and velocity throughout the flight.

For non-constant acceleration, the area under the acceleration-time curve is split into smaller rectangles, where the width is Δt, and the height is average acceleration. The quantity Δt multiplied by average acceleration is the change in velocity. Thus, the sum of the areas of the rectangles gives the total change in velocity from t1 to t2. When Δt approaches zero, the average acceleration approaches instantaneous acceleration, and the sum can be replaced with an integral. The area is then represented as the integral of instantaneous acceleration. Similarly, the displacement can be calculated from the area under the velocity-time curve.

Consider another example. A cyclist sprints at the end of a race to clinch a victory. They have an initial velocity of 11.5 m/s, and accelerate at a rate of 0.500 m/s2 for 7.00 s. What is their final velocity?

The known quantities are initial velocity (11.5 m/s), acceleration (0.500 m/s2), and time (7.00 s). The product of acceleration and time is equal to the difference between final and initial velocity. Using the values of initial velocity, acceleration, and time, the final velocity is calculated to be 15.0 m/s.

This text is adapted from Openstax, University Physics Volume 1, Section 3.6: Finding Velocity and Displacement from Acceleration.

Tags

Keyword Extraction VelocityPositionAccelerationGraphical MethodInertial Navigation SystemAirplaneAcceleration time GraphVelocity time GraphChange In VelocityChange In PositionInstantaneous AccelerationDisplacementCyclistSprintFinal Velocity

Du chapitre 3:

article

Now Playing

3.13 : Velocity and Position by Graphical Method

Mouvement rectiligne

7.3K Vues

article

3.1 : Position et déplacement

Mouvement rectiligne

17.4K Vues

article

3.2 : Vitesse moyenne

Mouvement rectiligne

18.2K Vues

article

3.3 : Vitesse instantanée - I

Mouvement rectiligne

12.3K Vues

article

3.4 : Vitesse instantanée - II

Mouvement rectiligne

9.2K Vues

article

3.5 : Accélération moyenne

Mouvement rectiligne

9.5K Vues

article

3.6 : Accélération instantanée

Mouvement rectiligne

7.6K Vues

article

3.7 : Lois de mouvement - I

Mouvement rectiligne

10.4K Vues

article

3.8 : Lois de mouvement - II

Mouvement rectiligne

9.4K Vues

article

3.9 : Lois de mouvement - III

Mouvement rectiligne

7.5K Vues

article

3.10 : Lois de mouvement : résoudre les problèmes

Mouvement rectiligne

11.9K Vues

article

3.11 : Chute libre des corps : Introduction

Mouvement rectiligne

8.1K Vues

article

3.12 : Chute libre des corps : Exemple

Mouvement rectiligne

15.8K Vues

article

3.14 : Utilisation des intégrales pour déterminer la vitesse et la position

Mouvement rectiligne

5.9K Vues

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.