Zaloguj się

The motion of a rocket is governed by the conservation of momentum principle. A rocket's momentum changes by the same amount (with the opposite sign) as the ejected gases. As time goes by, the rocket's mass (which includes the mass of the remaining fuel) continuously decreases, and its velocity increases. Therefore, the principle of conservation of momentum is used to explain the dynamics of a rocket's motion. The ideal rocket equation gives the change in velocity that a rocket experiences by burning off a certain mass of fuel, which decreases the total rocket mass. This equation was originally derived by the Soviet physicist Konstantin Tsiolkovsky in 1897.

The total change in a rocket's velocity depends on the mass of the fuel that is being burned during the flight, which is not linear. Furthermore, the rocket's acceleration depends on the speed of the exhaust gases. Therefore, the speed of the exhaust gas should be as high as possible to achieve the maximum velocity. Also, for a given speed of the exhaust gas, the maximum speed for the rocket is achieved when the ratio of the initial mass to the final mass of the rocket is as high as possible; that is, the mass of the rocket without fuel should be as low as possible, and it should carry a maximum amount of the fuel. The ideal rocket equation only accounts for the reaction force exerted by the exhaust gases on the rocket. It does not account for any other forces acting on the rocket.

This text is adapted from Openstax, University Physics Volume 1, Section 9.7: Rocket Propulsion.

Tagi

Rocket PropulsionConservation Of MomentumRocket MotionRocket EquationKonstantin TsiolkovskyExhaust Gas SpeedRocket AccelerationRocket Mass RatioIdeal Rocket Equation

Z rozdziału 9:

article

Now Playing

9.17 : Rocket Propulsion In Empty Space - II

Linear Momentum, Impulse and Collisions

2.9K Wyświetleń

article

9.1 : Pęd liniowy

Linear Momentum, Impulse and Collisions

13.2K Wyświetleń

article

9.2 : Siła i pęd

Linear Momentum, Impulse and Collisions

13.3K Wyświetleń

article

9.3 : Impuls

Linear Momentum, Impulse and Collisions

16.3K Wyświetleń

article

9.4 : Twierdzenie o impulsie i pędzie

Linear Momentum, Impulse and Collisions

10.6K Wyświetleń

article

9.5 : Zasada zachowania pędu: Wprowadzenie

Linear Momentum, Impulse and Collisions

14.0K Wyświetleń

article

9.6 : Zasada zachowania pędu: rozwiązywanie problemów

Linear Momentum, Impulse and Collisions

9.4K Wyświetleń

article

9.7 : Rodzaje kolizji - I

Linear Momentum, Impulse and Collisions

6.2K Wyświetleń

article

9.8 : Rodzaje kolizji - II

Linear Momentum, Impulse and Collisions

6.5K Wyświetleń

article

9.9 : Zderzenia sprężyste: Wprowadzenie

Linear Momentum, Impulse and Collisions

10.3K Wyświetleń

article

9.10 : Zderzenia sprężyste: studium przypadku

Linear Momentum, Impulse and Collisions

11.2K Wyświetleń

article

9.11 : Kolizje w wielu wymiarach: Wprowadzenie

Linear Momentum, Impulse and Collisions

4.2K Wyświetleń

article

9.12 : Kolizje w wielu wymiarach: rozwiązywanie problemów

Linear Momentum, Impulse and Collisions

3.4K Wyświetleń

article

9.13 : Środek masy: Wprowadzenie

Linear Momentum, Impulse and Collisions

12.0K Wyświetleń

article

9.14 : Znaczenie środka masy

Linear Momentum, Impulse and Collisions

6.0K Wyświetleń

See More

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone