Accedi

The motion of a rocket is governed by the conservation of momentum principle. A rocket's momentum changes by the same amount (with the opposite sign) as the ejected gases. As time goes by, the rocket's mass (which includes the mass of the remaining fuel) continuously decreases, and its velocity increases. Therefore, the principle of conservation of momentum is used to explain the dynamics of a rocket's motion. The ideal rocket equation gives the change in velocity that a rocket experiences by burning off a certain mass of fuel, which decreases the total rocket mass. This equation was originally derived by the Soviet physicist Konstantin Tsiolkovsky in 1897.

The total change in a rocket's velocity depends on the mass of the fuel that is being burned during the flight, which is not linear. Furthermore, the rocket's acceleration depends on the speed of the exhaust gases. Therefore, the speed of the exhaust gas should be as high as possible to achieve the maximum velocity. Also, for a given speed of the exhaust gas, the maximum speed for the rocket is achieved when the ratio of the initial mass to the final mass of the rocket is as high as possible; that is, the mass of the rocket without fuel should be as low as possible, and it should carry a maximum amount of the fuel. The ideal rocket equation only accounts for the reaction force exerted by the exhaust gases on the rocket. It does not account for any other forces acting on the rocket.

This text is adapted from Openstax, University Physics Volume 1, Section 9.7: Rocket Propulsion.

Tags

Rocket PropulsionConservation Of MomentumRocket MotionRocket EquationKonstantin TsiolkovskyExhaust Gas SpeedRocket AccelerationRocket Mass RatioIdeal Rocket Equation

Dal capitolo 9:

article

Now Playing

9.17 : Rocket Propulsion In Empty Space - II

Linear Momentum, Impulse and Collisions

2.9K Visualizzazioni

article

9.1 : Momento lineare

Linear Momentum, Impulse and Collisions

13.1K Visualizzazioni

article

9.2 : Forza e slancio

Linear Momentum, Impulse and Collisions

13.1K Visualizzazioni

article

9.3 : Impulso

Linear Momentum, Impulse and Collisions

16.2K Visualizzazioni

article

9.4 : Teorema dell'impulso-momento

Linear Momentum, Impulse and Collisions

10.6K Visualizzazioni

article

9.5 : Conservazione della quantità di moto: Introduzione

Linear Momentum, Impulse and Collisions

14.0K Visualizzazioni

article

9.6 : Conservazione della quantità di moto: risoluzione dei problemi

Linear Momentum, Impulse and Collisions

9.4K Visualizzazioni

article

9.7 : Tipi di collisioni - I

Linear Momentum, Impulse and Collisions

6.2K Visualizzazioni

article

9.8 : Tipi di collisione - II

Linear Momentum, Impulse and Collisions

6.5K Visualizzazioni

article

9.9 : Collisioni elastiche: Introduzione

Linear Momentum, Impulse and Collisions

10.2K Visualizzazioni

article

9.10 : Collisioni elastiche: caso di studio

Linear Momentum, Impulse and Collisions

11.1K Visualizzazioni

article

9.11 : Collisioni in più dimensioni: introduzione

Linear Momentum, Impulse and Collisions

4.2K Visualizzazioni

article

9.12 : Collisioni in più dimensioni: risoluzione dei problemi

Linear Momentum, Impulse and Collisions

3.4K Visualizzazioni

article

9.13 : Centro di Massa: Introduzione

Linear Momentum, Impulse and Collisions

11.9K Visualizzazioni

article

9.14 : Significato del centro di massa

Linear Momentum, Impulse and Collisions

5.9K Visualizzazioni

See More

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati