JoVE Logo

Zaloguj się

Angular momentum is directed perpendicular to the plane of the rotation, and its magnitude depends on the choice of the origin. The perpendicular vector joining the linear momentum vector of an object to the origin is called the “lever arm.” If the lever arm and linear momentum are collinear, then the magnitude of the angular momentum is zero. Therefore, in this case, the object rotates about the origin such that it lies on the rim of the circumference defined by the lever arm magnitude.

The net torque acting on rotating bodies causes the angular momentum to change, which is a rotational analog for Newton's second law of motion in terms of momentum. It is important to note that this is valid as long as both torque and angular momentum are measured to the same origin, fixed to an inertial frame of reference.

This text is adapted from Openstax, University Physics Volume 1, Section 11.2: Angular Momentum.

Tagi

Angular MomentumLever ArmTorqueRotational MotionNewton s Second LawInertial Frame Of Reference

Z rozdziału 11:

article

Now Playing

11.8 : Angular Momentum: Single Particle

Dynamics of Rotational Motions

6.0K Wyświetleń

article

11.1 : Moment obrotowy

Dynamics of Rotational Motions

14.1K Wyświetleń

article

11.2 : Obliczenia użytecznego momentu obrotowego

Dynamics of Rotational Motions

8.8K Wyświetleń

article

11.3 : Równanie dynamiki obrotowej

Dynamics of Rotational Motions

7.3K Wyświetleń

article

11.4 : Toczenie bez poślizgu

Dynamics of Rotational Motions

3.4K Wyświetleń

article

11.5 : Toczenie z poślizgiem

Dynamics of Rotational Motions

4.6K Wyświetleń

article

11.6 : Praca i moc dla ruchu obrotowego

Dynamics of Rotational Motions

5.0K Wyświetleń

article

11.7 : Twierdzenie o energii pracy dla ruchu obrotowego

Dynamics of Rotational Motions

5.6K Wyświetleń

article

11.9 : Moment pędu: ciało sztywne

Dynamics of Rotational Motions

8.5K Wyświetleń

article

11.10 : Zasada zachowania momentu pędu

Dynamics of Rotational Motions

10.0K Wyświetleń

article

11.11 : Zasada zachowania momentu pędu: zastosowanie

Dynamics of Rotational Motions

10.6K Wyświetleń

article

11.12 : Obrót asymetrycznego wierzchołka

Dynamics of Rotational Motions

788 Wyświetleń

article

11.13 : Żyroskop

Dynamics of Rotational Motions

2.8K Wyświetleń

article

11.14 : Żyroskop: Precesja

Dynamics of Rotational Motions

3.9K Wyświetleń

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone