Anmelden

Angular momentum is directed perpendicular to the plane of the rotation, and its magnitude depends on the choice of the origin. The perpendicular vector joining the linear momentum vector of an object to the origin is called the “lever arm.” If the lever arm and linear momentum are collinear, then the magnitude of the angular momentum is zero. Therefore, in this case, the object rotates about the origin such that it lies on the rim of the circumference defined by the lever arm magnitude.

The net torque acting on rotating bodies causes the angular momentum to change, which is a rotational analog for Newton's second law of motion in terms of momentum. It is important to note that this is valid as long as both torque and angular momentum are measured to the same origin, fixed to an inertial frame of reference.

This text is adapted from Openstax, University Physics Volume 1, Section 11.2: Angular Momentum.

Tags
Angular MomentumLever ArmTorqueRotational MotionNewton s Second LawInertial Frame Of Reference

Aus Kapitel 11:

article

Now Playing

11.8 : Angular Momentum: Single Particle

Dynamics of Rotational Motions

5.9K Ansichten

article

11.1 : Drehmoment

Dynamics of Rotational Motions

11.8K Ansichten

article

11.2 : Berechnung des Nettodrehmoments

Dynamics of Rotational Motions

8.7K Ansichten

article

11.3 : Gleichung der Rotationsdynamik

Dynamics of Rotational Motions

4.8K Ansichten

article

11.4 : Rollen ohne Rutschen

Dynamics of Rotational Motions

3.3K Ansichten

article

11.5 : Walzen mit Rutschen

Dynamics of Rotational Motions

4.5K Ansichten

article

11.6 : Arbeit und Kraft für Rotationsbewegungen

Dynamics of Rotational Motions

5.0K Ansichten

article

11.7 : Arbeitsenergiesatz für Rotationsbewegung

Dynamics of Rotational Motions

5.6K Ansichten

article

11.9 : Drehimpuls: Steifer Körper

Dynamics of Rotational Motions

8.5K Ansichten

article

11.10 : Erhaltung des Drehimpulses

Dynamics of Rotational Motions

9.9K Ansichten

article

11.11 : Drehimpulserhaltung: Anwendung

Dynamics of Rotational Motions

10.5K Ansichten

article

11.12 : Drehung der asymmetrischen Oberseite

Dynamics of Rotational Motions

771 Ansichten

article

11.13 : Gyroskop

Dynamics of Rotational Motions

2.8K Ansichten

article

11.14 : Gyroskop: Präzession

Dynamics of Rotational Motions

3.9K Ansichten

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten