Zaloguj się

The range rule of thumb in statistics helps us calculate a dataset's minimum and maximum values with known standard deviation. This rule is based on the concept that 95% of all values in a dataset lie within two standard deviations from the mean.

For instance, the range rule of thumb can be used to find the tallest and the shortest student in a class, given the mean student height and standard deviation. If the mean student height is 1.6 m and the standard deviation, s is 0.05 m, the height of the shortest and tallest student in that class can be calculated using the following formulae:

Height of the tallest student (maximum value) = mean + 2*s

Height of the shortest student (minimum value) = mean - 2*s

The tallest student has a height of 1.7 m, whereas the shortest student has a height of 1.5 m. So, one can conclude that the height of 95% of the students in the class falls within the range of 1.5 m to 1.7 m.

Additionally, from a range calculated from a known dataset, we can compute the standard deviation value. Consider an example of students’ test scores 80, 70, 50, 60, 90, 60, and 70. The dataset shows that the students’ scores lie within the range of 50-90. The minimum value is 50, and the maximum value is 90. The range of the student’s scores is 40. We can divide 40 by 4 to compute the standard deviation, s. For the above dataset, the standard deviation is 10.

Tagi
Range Rule Of ThumbStandard DeviationDatasetMinimum ValueMaximum ValueMeanTallest StudentShortest StudentHeight CalculationStatistical AnalysisStudent Test Scores

Z rozdziału 4:

article

Now Playing

4.8 : Range Rule of Thumb to Interpret Standard Deviation

Measures of Variation

8.7K Wyświetleń

article

4.1 : Co to jest zmienność?

Measures of Variation

10.9K Wyświetleń

article

4.2 : Zakres

Measures of Variation

10.8K Wyświetleń

article

4.3 : Odchylenie standardowe

Measures of Variation

15.5K Wyświetleń

article

4.4 : Błąd standardowy średniej

Measures of Variation

5.4K Wyświetleń

article

4.5 : Obliczanie odchylenia standardowego

Measures of Variation

7.0K Wyświetleń

article

4.6 : Wariancja

Measures of Variation

9.1K Wyświetleń

article

4.7 : Współczynnik zmienności

Measures of Variation

3.6K Wyświetleń

article

4.9 : Empiryczna metoda interpretacji odchylenia standardowego

Measures of Variation

5.0K Wyświetleń

article

4.10 : Twierdzenie Czebyszewa do interpretacji odchylenia standardowego

Measures of Variation

4.0K Wyświetleń

article

4.11 : Średnie odchylenie bezwzględne

Measures of Variation

2.5K Wyświetleń

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone