サインイン

The range rule of thumb in statistics helps us calculate a dataset's minimum and maximum values with known standard deviation. This rule is based on the concept that 95% of all values in a dataset lie within two standard deviations from the mean.

For instance, the range rule of thumb can be used to find the tallest and the shortest student in a class, given the mean student height and standard deviation. If the mean student height is 1.6 m and the standard deviation, s is 0.05 m, the height of the shortest and tallest student in that class can be calculated using the following formulae:

Height of the tallest student (maximum value) = mean + 2*s

Height of the shortest student (minimum value) = mean - 2*s

The tallest student has a height of 1.7 m, whereas the shortest student has a height of 1.5 m. So, one can conclude that the height of 95% of the students in the class falls within the range of 1.5 m to 1.7 m.

Additionally, from a range calculated from a known dataset, we can compute the standard deviation value. Consider an example of students’ test scores 80, 70, 50, 60, 90, 60, and 70. The dataset shows that the students’ scores lie within the range of 50-90. The minimum value is 50, and the maximum value is 90. The range of the student’s scores is 40. We can divide 40 by 4 to compute the standard deviation, s. For the above dataset, the standard deviation is 10.

タグ
Range Rule Of ThumbStandard DeviationDatasetMinimum ValueMaximum ValueMeanTallest StudentShortest StudentHeight CalculationStatistical AnalysisStudent Test Scores

章から 4:

article

Now Playing

4.8 : Range Rule of Thumb to Interpret Standard Deviation

変動の尺度

8.7K 閲覧数

article

4.1 : バリエーションとは?

変動の尺度

10.9K 閲覧数

article

4.2 : 範囲

変動の尺度

10.8K 閲覧数

article

4.3 : 標準偏差

変動の尺度

15.5K 閲覧数

article

4.4 : 平均の標準誤差

変動の尺度

5.4K 閲覧数

article

4.5 : 標準偏差の計算

変動の尺度

7.0K 閲覧数

article

4.6 : 分散

変動の尺度

9.1K 閲覧数

article

4.7 : 変動係数

変動の尺度

3.6K 閲覧数

article

4.9 : 標準偏差を解釈するための経験的方法

変動の尺度

5.0K 閲覧数

article

4.10 : 標準偏差を解釈するチェビシェフの定理

変動の尺度

4.0K 閲覧数

article

4.11 : 平均絶対偏差

変動の尺度

2.5K 閲覧数

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved